Industrial Nitrogen Gas Applications

There are thousands of applications for industrial gases. Nitrogen is generally used for three main functions:

- · It prevents microbial growth or acts as a filler gas in food applications
- · It prevents slow oxidization of products such as chemicals and metals during processing or heating
- · It prevents rapid oxidization of products that are flammable or explosive

Pharmaceutical

Whether in primary or secondary pharmaceutical product manufacture or as a centralised QA laboratory supply; within research establishments or universities and colleges, Parker can offer a solution to suit the critical demands of this industry sector.

For blanketing of pharmaceutical product ingredients and pressure transfer within reactor vessels, to micronising powders to prevent oxidisation or explosion, Parker nitrogen generators can cut costs, reduce risk and improve productivity.

Centralised laboratory systems remove the need to have high pressure cylinders within the working environment and the possibility of running out of gas during a QA analysis procedure. Parker nitrogen gas generators are typically used for analytical equipment such as LC/MS, GC, reaction blanketing within fume cupboards, solvent evaporation, ICP, ELSD, NMR and circular dichroism.

Food and Beverage

Most food products start to deteriorate from the moment they are harvested or prepared for packaging, being under attack from a multitude of spoilage mechanisms. By flushing, storing and/or packing with nitrogen, oxygen that many of these micro-organisms need in order to survive and multiply, is removed and the spoilage process is significantly reduced.

Prepared salads and vegetables, fresh chilled ready meals, meat, poultry, fish, dairy produce (including cheese), breads, coffee as well as snack foods such as potato chips and nuts can all benefit from 'modified atmosphere packaging' (or MAP as it is often referred to). By using nitrogen gas from a Parker generator, the product shelf life is increased and the appearance and quite often taste, is also improved.

Nitrogen is also used for 'controlled atmosphere storage' of fresh fruits and vegetables, sparging and blanketing food oils as well as bulk powders, cereals and liquid ingredients.

Alcoholic and non-alcoholic drinks and ingredients can suffer similar spoilage mechanisms to food, however one of the most significant threats to product quality is oxidisation which adversely affects product taste. Beer and wine can absorb unwanted dissolved oxygen throughout the production process. Oxygen can also reduce the effectiveness of natural or added vitamin C which maybe used in fruit juices.

Nitrogen gas generators provide an ideal cost effective solution for all of the processes involved in beverage production.

Lasers

Laser Cutting

By far the largest use of nitrogen gas within this industry sector is for laser cutting. Nitrogen gas is used as an 'assist gas' to prevent oxidisation or discolouration and to blow away the molten material from the cut edge.

It is also used in certain types of laser cutting machine as a 'purge gas' to ensure the laser beam guide path from the resonator (where

the beam is generated), to the cutting head, is free of contamination that could otherwise affect the power or alter the shape of the beam.

Laser Sintering

Laser sintering or rapid prototyping uses a laser to form a solid 3D structure within a plastic powder material. Complex shapes and patterns can be constructed and modelled with ease. Nitrogen is used to blanket and prevent oxidisation of the powder material while it melts and solidifies to shape under the heat generated by the laser beam.

Laser Ablation

Nitrogen is used to expel fumes and blanket delicate electronic circuits where a laser beam is used to erode pathways on micro printed circuit boards.

Laser Eye Surgery

Nitrogen is used as a beam purge and pneumatics gas on Eximer laser machines which are used in the corrective treatment of eyesight defects.

Heat Treatment

Nitrogen gas is commonly used to exclude oxygen from heat treatment furnaces and ovens. Parker can supply nitrogen gas generation systems to replace expensive bulk vessel liquid supplies for many heat treatment processes.

Typical applications include:

- Belt furnaces
- Batch furnaces
- Vacuum ovens
- Brazing
- Carburising
- Tempering
- Annealing
- Gas quenching
- Neutral hardening
- Normalising
- Sintering

Fire Prevention and Archive Protection

From the preservation of treasures for the generations after us, to preventing essential data destruction due to fire, Parker nitrogen generators provide a unique solution.

Oxygen depleted air can be pumped into buildings that house treasures and archives or computer stored data to help prevent total loss caused by fire. Museum pieces, paintings, artefacts, furniture and valuable fabrics can all be protected.

In general, only a modest reduction in normal ambient oxygen levels is enough to prevent fire. At 16% oxygen content, archives are protected whilst intermittent human exposure to these levels will have no adverse effects.

What Nitrogen Quality Do I Need?

Traditional gas companies generally provide gas that is of high purity regardless of whether the application or process needs it. This is as a result of the ASU manufacturing process. Typically cylinder and liquid nitrogen has a maximum remaining oxygen content of between 5ppm to 20ppm v/v.

The majority of applications do not need such high purity gas and the benefit of using a higher oxygen content Parker generated gas is that less energy is used to produce it, so the unit gas cost will be more competitive.

For example using nitrogen with a maximum remaining oxygen content of 5% uses 5 times less energy to generate than with a maximum remaining oxygen content of 10ppm.

Providing customers with ultra-high purity nitrogen in all instances is an unnecessary waste of money and energy.

What do we mean by 'purity'?

By purity Parker means the maximum remaining oxygen content in the output nitrogen gas. Parker nitrogen technology when combined with Parker compressed air pre-treatment, guarantees the nitrogen gas to be commercially sterile, oil-free, dry and particulate free. (Within the specifications defined in the product information data contained in this catalogue.)

The maximum remaining oxygen content required will vary with every application. Maximum cost and energy savings = maximum oxygen level permissible

High Purity 10 ppm to 1000ppm (99.999% to 99.9%)

Laser cutting 50ppm to 500ppm

Heat treatment 10ppm to 1000ppm

Electronics soldering 50ppm to 500ppm

Pharmaceutical 10ppm to 5000ppm

Mid Purity 0.1% to 1% (99.9% to 99%)

Food MAP 0.1% to 1%

Food processing 0.1% to 1%

Beer dispense 0.5%

Wine blanketing 0.5% **Oil sparging**

0.5%

Brazing 0.5% Injection molding

0.5% to 1% Wire annealing

0.5% Aluminium sparging 0.5%

Low Purity 1% to 5% (99% to 95%)

Fire prevention 5% **Explosion prevention** 2% to 5%

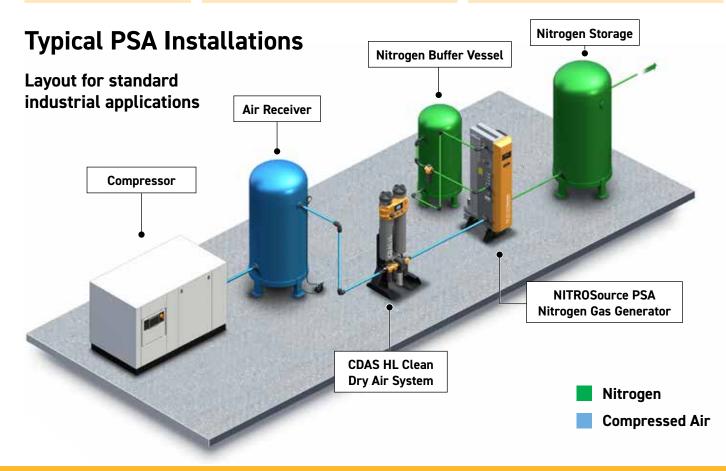
Pressure testing 5%

Gas seal blanketing

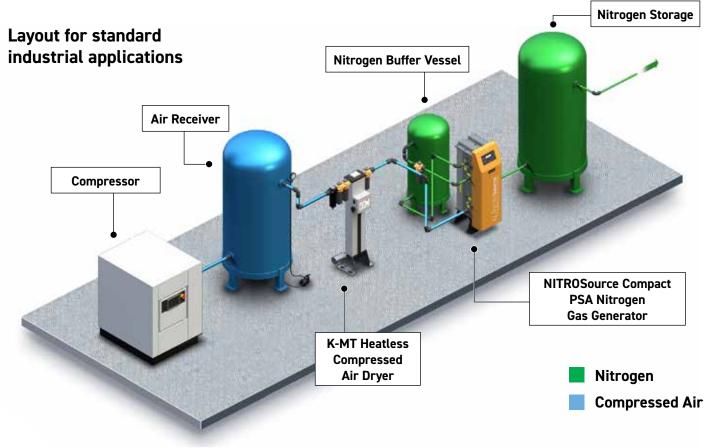
Pigging

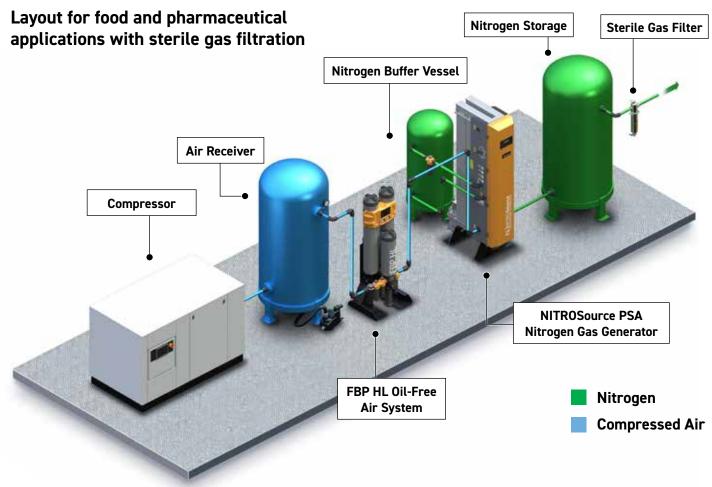
Autoclaves

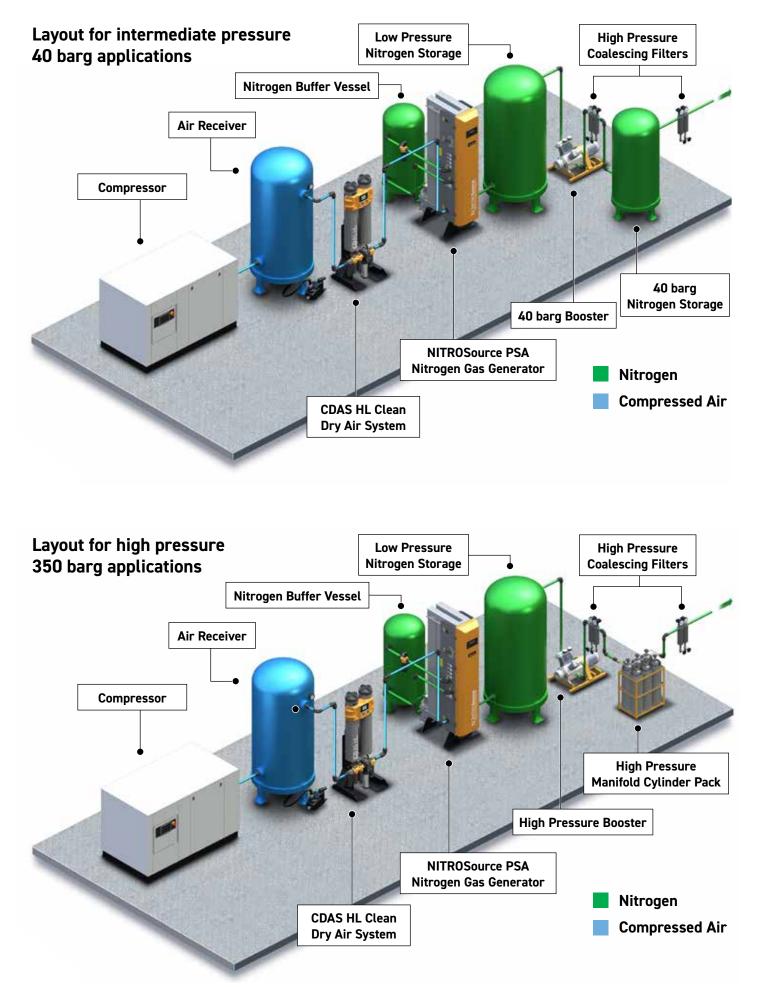
5%


5%

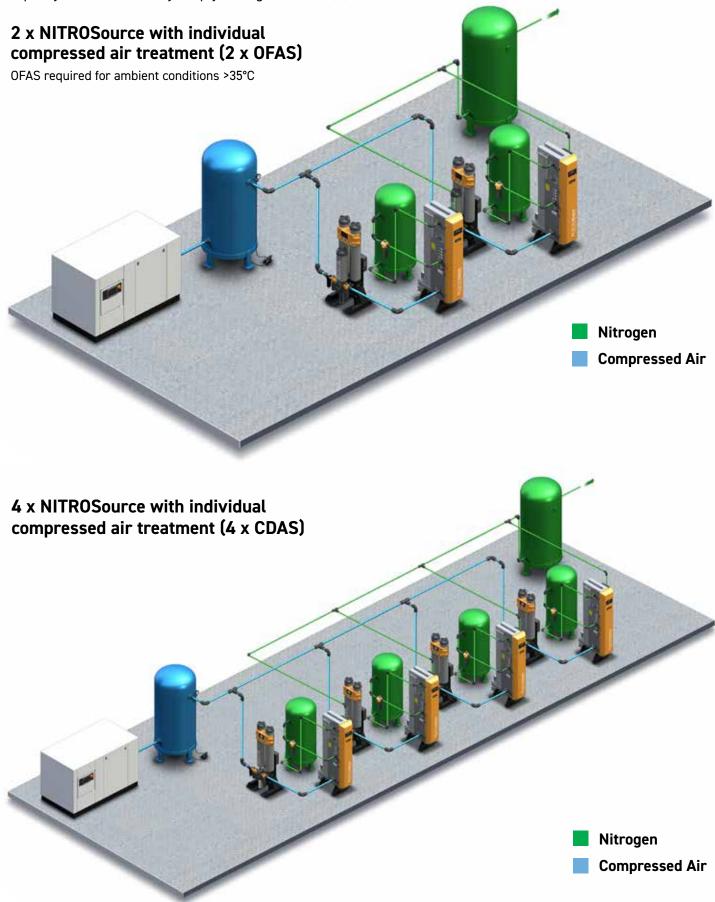
2% **Dry boxes** 2%

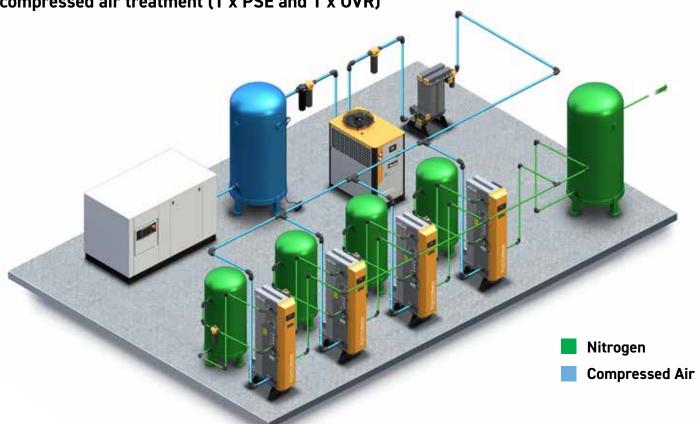

Laser sintering

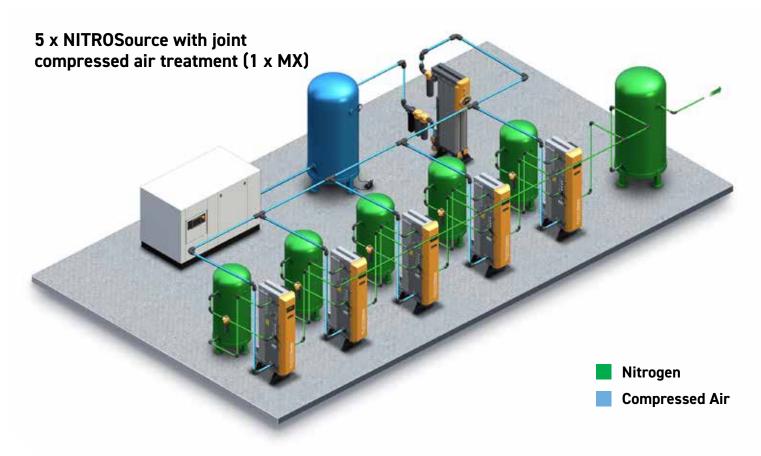

Chemical blanketing 1% to 5%


5%

Nitrogen Gas Generation - Typical PSA Installations






Nitrogen Gas Generation - Typical Multi-bank Installations

Unlike traditional designs, NITROSource PSA models can be multi-banked to provide extra nitrogen capacity should demand increase in the future. There is no need to replace the generator with a larger unit, additional capacity can be covered by simply adding extra bank(s).

4 x NITROSource with joint compressed air treatment (1 x PSE and 1 x OVR)

NITROSource PSA Nitrogen Gas Generator

Technical Data

		Nitrogen Flow Rates m ³ /hr vs Purity (Oxygen Content)												
Model	Parts Per Million (ppm)						Percent (%)							
	5	10	50	100	250	500	0.10	0.40	0.50	1	2	3	4	5
N2-20P	3.5	4.5	6.7	8.0	9.7	11.1	12.4	16.7	17.7	21.3	25.3	29.8	30.9	33.7
N2-25P	5.3	6.8	10.1	12.0	14.6	16.7	18.6	25.1	26.6	32.0	38.0	44.7	46.4	50.6
N2-35P	7.0	9.0	13.4	16.0	19.4	22.2	24.8	33.4	35.4	42.6	50.6	59.6	61.8	67.4
N2-45P	8.8	11.3	16.8	20.0	24.3	27.8	31.0	41.8	44.3	53.3	63.3	74.5	77.3	84.3
N2-55P	10.5	13.5	20.1	24.0	29.1	33.3	37.2	50.1	53.1	63.9	75.9	89.4	92.7	101.1
N2-60P	11.6	15.0	22.3	26.6	32.3	36.9	41.2	55.5	58.9	70.8	84.1	99.1	102.7	112.1
N2-65P	13.3	17.1	25.5	30.4	36.9	42.2	47.1	63.5	67.3	80.9	96.1	113.2	117.4	128.1
N2-75P	14.5	18.6	27.7	33.1	40.2	46.0	51.3	69.1	73.3	88.2	104.7	123.4	127.9	139.5
N2-80P	16.1	20.7	30.8	36.8	44.6	51.1	57.0	76.8	81.4	98.0	116.4	137.1	142.1	155.0

Performance data is based on 7 bar g air inlet pressure and 20°C - 25°C ambient temperature. Consult Parker for performance under specific conditions.

m³ reference standard 20°C, 1013 millibar(a), 0% relative water vapour pressure.

Inlet Parameters

Inlet Air Quality	ISO 8573-1: 2010 Class 2.2.2 (2.2.1 with high oil vapour content)
Inlet Air Pressure Range	5 - 13 bar g (72.5 - 217 psi g)

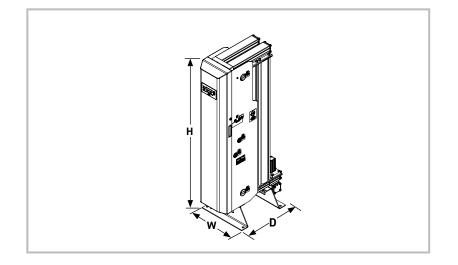
Environmental Parameters

Ambient Temperature	5 - 50°C (41 - 122°F)
Humidity	50% @ 40°C (80% @ MAX @ 31°C)
IP Rating	IP20 / NEMA 1
Pollution Degree	2
Installation Category	Ш
Altitude	< 2000 m (6562 ft)
Noise	<80 dB (A)

Part Number Breakdown / Product Key

Electrical Parameters

Generator Supply	100 - 240 +/- 10% Vac 50/60Hz
Generator Power	55 W
Fuse	3.15 A (Anti Surge (T), 250v, 5 x 20mm HBC, Breaking Capacity 1500A @ 250v, IEC 60127, UL R/C Fuse)


Port Connections

Air Inlet	G1
N2 Outlet to Buffer	G1
N2 Inlet from Buffer	G½
N2 Outlet	G½

Buffer Vessel Sizes

Product Code		-	Model	-	lechnology	O2 Purity		Flow @ 5 bar g		Energy Saving Technology (EST)	
N	2	-	20	1	Р	2	x	L	-	Ν	
			25			1	A	Ν	Л	Y	
			35			I	В	H	ł		
			45						N	= Does Not	
			60							clude EST	
			55		X = U	ltra Higł	n Purity		Y	= Includes E	ST
			65		(≤10p			1 - 1	Low Fl	214/	
			75		A = H	igh Puri	ty (ppm)		0 m ³ /h		
			80		B = Lo	ow Purit	t y (%)		Mediu 120 m ³	m Flow /hr)	
N2 = NITROS	Source			P = Pressu Adsorption	-				H = High Flow (120-300 m ³ /hr)		

Model	Size (litres)
N2-20P	250
N2-25P	500
N2-35P	500
N2-45P	750
N2-55P	750
N2-60P	750
N2-65P	1000
N2-75P	1000
N2-80P	1000

Weights and Dimensions

	Unpacked							Packed								
Model	Heig	ht (H)	Widt	h (W)	Dept	th (D)	We	ight	He	ight	Wi	dth	De	pth	Wei	ght
	mm	ins	mm	ins	mm	ins	kg	lbs	mm	ins	mm	ins	mm	ins	kg	lbs
N2-20P					881	34.7	299	658					1090	42.9	398.4	876
N2-25P					1050	41.3	384	845	729	28.7			1260	49.6	495.4	1090
N2-35P				21.7	1219	48.0	469	1032	129	20.7		78.7	1430	56.3	580.4	1277
N2-45P					1388	54.6	553	1217					1600	63.0	686.4	1510
N2-55P	1894	74.6	74.6 550		1557	61.3	638	1404			2000		1770	69.7	782.4	1721
N2-60P					1726	68.0	722	1588					1935	76.2	897.4	1974
N2-65P					1895	74.6	807	1775	832	32.8			2100	82.7	997.4	2194
N2-75P					2064	81.3	892	1962					2275	89.6	1093.4	2405
N2-80P					2233	87.9	976	2147					2445	96.3	1186.4	2610

Preventative Maintenance Kits

	High Purity Ge	nerators (ppm)	Low Purity Generators (%)			
Model	Without EST (Model Nos. N2XXPAXN)	With EST (Model Nos. N2XXPAXY)	Without EST (Model Nos. N2XXPBXN)	With EST (Model Nos. N2XXPBXY)		
Kit Part Numbers	M12.NONEST.0001 M24.PPM.0002 M36.STD.0001 M60.STD.0001	M12.EST.0001 M24.PPM.0002 M36.STD.0001 M60.STD.0001	M12.NONEST.0001 M24.PCT.0002 M36.STD.0001 M60.STD.0001	M12.EST.0001 M24.PCT.0002 M36.STD.0001 M60.STD.0001		

Kit Contents

Part Number	Description / Service Interval	Contents
M12.NONEST.0001	12 Month Non EST Service Kit (Every 12 Months)	Exhaust Silencer P025AO Dust Filter Element
M12.EST.0001	12 Month EST Service Kit (Every 12 Months)	Exhaust Silencer P025AO Dust Filter Element In-Line Filter
M24.PPM.0002	24 Month PPM Service Kit (Every 24 Months)	PPM Cell c/w Wiring
M24.PCT.0002	24 Month Percentage Service Kit (Every 24 Months)	% Cell c/w Wiring
M36.STD.0001	36 Month Standard Service Kit (Every 36 Months)	8 Bank Solenoid Valve
M60.STD.0001	60 Month Standard Service Kit (Every 24 Months)	40 x 25mm Stroke Cylinders (x6) Over Moulded Valve Discs and Guides (x6) 50 x 100mm Stroke Cylinders (x2) Valve Discs (x2 Sets) Valve Bonnets (x2) Assorted O-Rings Fixing Screws

NITROSource Compact PSA Nitrogen Gas Generator

Please contact Parker for NITROSource Compact performance data or visit parker.com/gsfe.

Inlet Parameters

Inlet Air Quality	ISO 8573-1: 2010 Class 2.2.2 (2.2.1 with high oil vapour content)
Inlet Air Pressure Range	6 - 10 bar g (87 - 145 psi g)

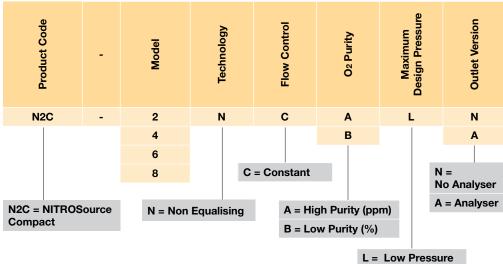
Environmental Parameters

Ambient Temperature	5 - 50°C (41 - 122°F)
Humidity	50% @ 40°C (80% @ MAX @ 31°C)
IP Rating	IP20 / NEMA 1
Pollution Degree	2
Installation Category	II
Altitude	< 2000 m (6562 ft)
Noise	<80 dB (A)

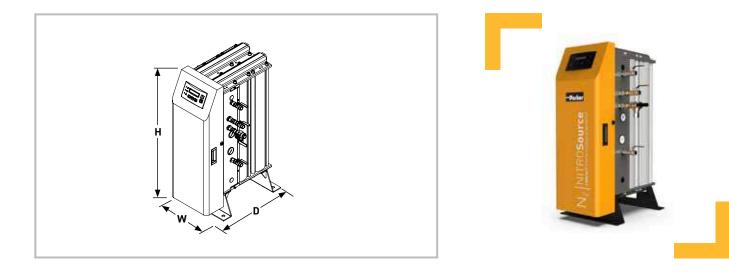
Electrical Parameters

Generator Supply	100 - 240 +/- 10% Vac 50/60Hz
Generator Power	55 W
Fuse	3.15 A (Anti Surge (T), 250v, 5 x 20mm HBC, Breaking Capacity 1500A @ 250v, IEC 60127, UL R/C Fuse)

Port Connections


Air Inlet	G1
N2 Outlet to Buffer	G1
N2 Inlet from Buffer	G½
N2 Outlet	G1⁄2

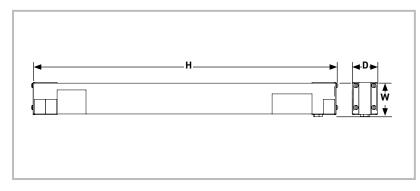
Flowrate


Model	Units	10PPM	50PPM	100PPM	250PPM	500PPM	0.1%	0.5%	1%	2%	3%	4%	5%
N00 0	m³/hr	0.81	1.24	1.54	1.77	2.09	2.48	3.69	4.39	6.11	7.73	9.13	10.29
N2C-2	cfm	0.5	0.7	0.9	1.0	1.2	1.5	2.2	2.6	3.6	4.5	5.4	6.1
N00 4	m³/hr	1.73	2.38	2.94	3.52	4.21	4.96	7.58	9.12	12.95	15.89	18.38	20.57
N2C-4	cfm	1.0	1.4	1.7	2.1	2.5	2.9	4.5	5.4	7.6	9.4	10.8	12.1
N2C-6	m³/hr	2.41	3.91	4.46	5.66	6.50	7.59	11.06	13.32	18.64	22.68	26.06	29.04
N2C-0	cfm	1.4	2.3	2.6	3.3	3.8	4.5	6.5	7.8	11.0	13.3	15.3	17.1
	m³/hr	3.38	5.01	5.89	7.35	8.68	10.24	14.86	18.01	24.02	29.33	33.93	37.81
N2C-8	cfm	2.0	2.9	3.5	4.3	5.1	6.0	8.7	10.6	14.1	17.3	20.0	22.3

Stated flows are for operation at 7 bar g (100 psi g / 0.7 MPa g) with reference to 25 °C

Part Number Breakdown / Product Key

(6 - 10 bar g)



Weights and Dimensions

		Unpacked								Pac	ked															
Model	Heig	ht (H)	Widt	h (W)	Dept	:h (D)	Wei	ight	Hei	ght	Wi	dth	De	pth	Wei	ight										
	mm	ins	mm	ins	mm	ins	kg	lbs	mm	ins	mm	ins	mm	ins	kg	lbs										
N2C-2					471	19	98	216							174	383										
N2C-4	1004	44	450	450	450	450	450	450	450			450 40	450 10	10	640	26	145	320	1 400	50	010	0.4	050	00	221	487
N2C-6	1034	41	450	18	809	33	196	432	1490	59	612	612 24	950 38	38	272	597										
N2C-8					977	38	249	549							303	668										

Preventative Maintenance Kits

Part Number	Description / Service Interval	Contents
606280162	12 Month MIST–X Silencer Kit (Every 12 Months)	MIST-X 150 Silencer
P010AO	12 Month Filter Element Kit (Every 12 Months)	P001AO Dust Filter Element
M24.PPM.0002	24 Month PPM Service Kit (Every 24 Months)	PPM Cell c/w Wiring
M24.PCT.0002	24 Month Percentage Service Kit (Every 24 Months)	% Cell c/w Wiring
606510003	24 Month Valve Overhaul Kit - Generator With Analyser (Every 24 Months)	Air Inlet Valves (x2) Exhaust Valves (x2) Outlet Valves (x2)
606510005	24 Month Valve Overhaul Kit - Generator Without Analyser (Every 24 Months)	Air Inlet Valves (x2) Exhaust Valves (x2) Outlet Valve

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Purity %	Typical Nitrogen ¹⁾ flow rate in m ³ /hr ²⁾ (SCFM)						
	99.5	99.0	98.0	97.0	96.0	95.0	
4 bar g	0.20	0.32	0.50	0.73	0.84	1.04	
(58 psi g)	(0.12)	(0.19)	(0.29)	(0.43)	(0.49)	(0.61)	
5 bar g	0.28	0.46	0.73	0.92	1.17	1.54	
(72.5 psi g)	(0.16)	(0.27)	(0.43)	(0.54)	(0.69)	(0.91)	
6 bar g	0.44	0.60	0.92	1.20	1.53	1.75	
(87 psi g)	(0.21)	(0.35)	(0.54)	(0.71)	(0.9)	(1.03)	
7 bar g	0.44	0.71	1.16	1.49	1.90	2.10	
(101.5 psi g)	(0.26)	(0.42)	(0.68)	(0.88)	(1.12)	(1.24)	
8 bar g	0.54	0.85	1.31	1.75	2.17	2.60	
(116 psi g)	(0.32)	(0.5)	(0.77)	(0.77)	(1.28)	(1.53)	
9 bar g	0.59	0.97	1.54	2.08	2.50	3.00	
(130.5 psi g)	(0.35)	(0.57)	(0.91)	(1.22)	(1.47)	(1.77)	
10 bar g	0.67	1.11	1.78	2.29	2.80	3.40	
(145 psi g)	(0.39)	(0.65)	(1.05)	(1.35)	(1.65)	(2)	
11 bar g	0.73	1.25	1.95	2.57	3.20	3.90	
(159.5 psi g)	(0.43)	(0.74)	(1.15)	(1.51)	(1.88)	(2.3)	
12 bar g	0.79	1.39	2.17	2.80	3.40	4.20	
(174 psi g)	(0.46)	(0.82)	(1.28)	(1.65)	(2)	(2.47)	
13 bar g	0.89	1.49	2.40	3.10	3.80	4.80	
(188.5 psi g)	(0.52)	(0.88)	(1.41)	(1.82)	(2.24)	(2.83)	

Purity %	Туріса	Typical Feed-air consumption at nitrogen flo in m ³ /hr ² (SCFM)				
	99.5	99.0	98.0	97.0	96.0	95.0
4 bar g	1.9	1.8	1.9	2.3	2.3	2.5
(58 psi g)	(1.1)	(1.1)	(1.1)	(1.4)	(1.4)	(1.5)
5 bar g	2.2	2.3	2.6	2.7	3.0	3.6
(72.5 psi g)	(1.3)	(1.4)	(1.5)	(1.6)	(1.8)	(2.1)
6 bar g	2.5	2.8	3.2	3.4	3.9	4.0
(87 psi g)	(1.5)	(1.6)	(1.9)	(2)	(2.3)	(2.4)
7 bar g	3.0	3.3	3.9	4.2	4.8	4.7
(101.5 psi g)	(1.8)	(1.9)	(2.3)	(2.5)	(2.8)	(2.8)
8 bar g	3.5	3.8	4.4	4.9	5.4	5.8
(116 psi g)	(2.1)	(2.2)	(2.6)	(2.9)	(3.2)	(3.4)
9 bar g	3.7	4.3	5.1	5.8	6.3	6.7
(130.5 psi g)	(2.2)	(2.5)	(3)	(3.4)	(3.7)	(3.9)
10 bar g	4.1	4.8	5.9	6.3	7.0	7.5
(145 psi g)	(2.4)	(2.8)	(3.5)	(3.7)	(4.1)	(4.4)
11 bar g	4.4	5.3	6.3	7.1	7.9	8.5
(159.5 psi g)	(2.6)	(3.1)	(3.7)	(4.2)	(4.6)	(5)
12 bar g	4.6	5.9	7.0	7.7	8.4	9.3
(174 psi g)	(2.7)	(3.5)	(4.1)	(4.5)	(4.9)	(5.5)
13 bar g	5.5	6.4	7.9	8.7	9.5	10.7
(188.5 psi g)	(3.2)	(3.8)	(4.6)	(5.1)	(5.6)	(6.3)

Maximum pressure drop <0.1 bar.

Values between brackets are indicative imperial values

¹⁾ The above data represents the typical performance of a single membrane module. Actual performance can vary depending on factors such as feed air pressure and temperature. Please contact your Parker go to person for actual performance information to meet your application's requirements.
²⁾ m³/hr refers to conditions at 1013 mbar(a) and 20°C.

For higher purities please contact Parker

Ambient Conditions

Ambient temperature	+2°C to +50°C (+36°F to 122°F)
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

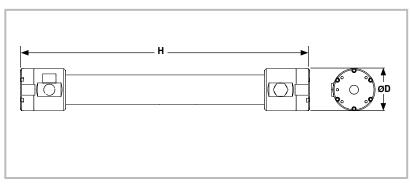
Maximum operating pressure	13.0 bar g (190 psi g)
Min. / Max. operating temperature	+2°C to +50°C (+36°F to 122°F)
Maximum oil vapour content	<0.01 mg/m ³ (<0.01 ppm (w))
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed-air temperatures other than 20°C	Use bulletin S3.1.240*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.240*

* Revision number may vary, make sure to use the most recent Revision

Material


Housing	Steel
Tube	Aluminum
Coating (housing)	ESPC to RAL 7039 (Quartz Grey)
Coating (tube)	none

Services on Request

Weight, Dimensions and Connections

Dimensions H x W x D	758 x 80 x 63 mm (29.84" x 3.15" x 2.48")
Weight	3.2 kg (7.05 lb)
Connection feed-air	G¾ female to ISO 228
Connection nitrogen enriched air	G¾ female to ISO 228
Connection oxygen enriched air at atmospheric pressure	G¾ female to ISO 228
Dimensional drawing	Refer to K3.1.344

Note

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Purity %	Typical Nitrogen ¹⁾ flow rate in m ³ /hr ²⁾ (SCFM)							
	99.5	99	98	97	96	95	93	90
4 bar g (58 psi g)	0.90 (0,53)	1.44 (0,85)	2.20 (1,3)	2.91 (1,71)	3.63 (2,14)	4.36 (2,57)		
5 bar g (72.5 psi g)	1.3 (0,77)	2.06 (1,21)	3.09 (1,82)	4.05 (2,38)	5.10 (3)	6.15 (3,62)		
6 bar g (87 psi g)	1.71 (1)	2.67 (1,57)	3.99 (2,35)	5.18 (3,05)	6.56 (3,86)	7.94 (4,67)	11.3 (6,62)	18.2 (10,7)
7 bar g (101.5 psi g)	2.11 (1,24)	3.27 (1,93)	4.90 (2,89)	6.46 (3,8)	8.12 (4,78)	9.78 (5,76)	13.8 (8,1)	22.1 (13)
8 bar g (116 psi g)	2.50 (1,47)	3.87 (2,28)	5.82 (3,42)	7.73 (4,55)	9.67 (5,69)	11.6 (6,84)	16.4 (9,63)	26.6 (15,7)
9 bar g (130.5 psi g)	2.81 (1,66)	4.46 (2,62)	6.77 (3,98)	9.03 (5,32)	11.27 (6,63)	13.5 (7,95)	19.0 (11,2)	30.8 (18,1)
10 bar g (145 psi g)	3.12 (1,84)	4.94 (2,91)	7.64 (4,5)	10.3 (6,08)	12.9 (7,57)	15.4 (9,06)	21.7 (12,8)	35.6 (21)
11 bar g (159.5 psi g)	3.41 (2)	5.46 (3,21)	8.49 (5)	11.5 (6,78)	14.5 (8,51)	17.3 (10,2)		
12 bar g (174 psi g)	3.68 (2,16)	5.96 (3,51)	9.32 (5,49)	12.5 (7,38)	15.9 (9,35)	19.1 (11,2)		
13 bar g (188.5 psi g)	3.93 (2,32)	6.45 (3,8)	10.1 (5,92)	13.6 (7,98)	17.1 (10,1)	20.9 (12,3)		

Purity %	Typical Feed-air consumption at nitrogen flow rate in m³/hr²) (SCFM)							
	99.5	99	98	97	96	95	93	90
4 bar g (58 psi g)	7.5 (4,4)	8.6 (5,1)	9.0 (5,3)	9.5 (5,6)	10.4 (6,1)	11.2 (6,6)		
5 bar g (72.5 psi g)	10.1 (6)	11.5 (6,7)	11.7 (6,9)	12.6 (7,4)	14.0 (8,2)	15.2 (8,9)		
6 bar g (87 psi g)	12.3 (7,2)	13.8 (8,1)	14.2 (8,4)	15.3 (9)	17.1 (10,1)	18.8 (11,1)	22.6 (13,3)	29.9 (17,6)
7 bar g (101.5 psi g)	14.7 (8,6)	16.2 (9,6)	17.1 (10)	18.7 (11)	20.8 (12,2)	22.7 (13,4)	27.1 (16)	36.0 (21,2)
8 bar g (116 psi g)	16.5 (9,7)	18.5 (10,9)	19.7 (11,6)	21.9 (12,9)	24.4 (14,4)	26.5 (15,6)	31.8 (18,7)	42.8 (25,2)
9 bar g (130.5 psi g)	18.5 (10,9)	21.1 (12,4)	22.7 (13,4)	25.6 (15,1)	28.3 (16,7)	30.6 (18)	36.8 (21,6)	49.4 (29,1)
10 bar g (145 psi g)	20.4 (12)	23.2 (13,7)	25.5 (15)	29.2 (17,2)	32.1 (18,9)	34.8 (20,5)	42.0 (24,7)	57.2 (33,7)
11 bar g (159.5 psi g)	22.1 (13)	25.5 (15)	28.3 (16,6)	32.4 (19,1)	36.1 (21,2)	39.0 (23)		
12 bar g (174 psi g)	24.1 (14,2)	27.9 (16,4)	31.3 (18,4)	35.5 (20,9)	39.8 (23,4)	43.3 (25,5)		
13 bar g (188.5 psi g)	25.9 (15,3)	30.9 (18,2)	34.3 (20,2)	38.8 (22,8)	43.2 (25,5)	47.8 (28,1)		

Maximum pressure drop at Purity <0.2 bar

Values between brackets are indicative of imperial values

¹⁾ The above data represents the typical performance of a single membrane module. Actual performance can vary depending on factors such as feed air pressure and temperature. Please contact your Parker go to person for actual performance information to meet your application's requirements.
²⁾ m³/hr refers to conditions at 1013mbar(a) and 20°C.

²⁾ m³/hr refers to conditions at 1013mbar(a) and 2 For purities >99.5% please contact Parker

Ambient temperature	+2°C to +50°C (+36°F to 122°F)
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

Maximum operating pressure	13.0 bar g (190 psi g)			
Min. / Max. operating temperature	+2°C / +50°C (+36°F to 122°F)			
Maximum oil vapour content	<0.01 mg/m ³ (<0.01 ppm (w))			
Particles	filtered at 0.01 µm cut off			
Relative humidity	<100% (non condensing)			

Flow Rate Corrections

Note

Nitrogen flow rate at feed-air temperatures other than 20°C	Use bulletin S3.1.240*		
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.240*		

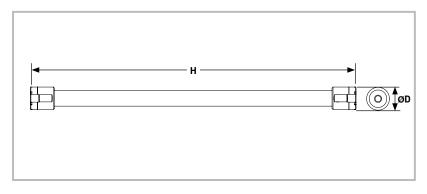
* Revision number may vary, make sure to use the most recent Revision

Mechanical Design Housing

Design pressure	15 bar g ⁴⁾ (217 psi g) ⁴⁾
Design temperature	65°C ⁴⁾ (149°F) ⁴⁾

⁴ Membrane ambient and operating conditions are lower

Material


Housing	Aluminum
Coating	ESPC to RAL 7039 (Quartz Grey) Dry Film Thickness: 60 micron

Services on Request

3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x Ø D	782 x 114 mm (30.79" x 4.49")
Weight	5.5 kg (12.1 lb)
Connection feed-air	G¾ female to ISO 228
Connection nitrogen enriched air	G¾ female to ISO 228
Connection oxygen enriched air at atmospheric pressure enriched air	(-1 temple to IS() 228
Dimensional drawing	Refer to K3.1.383

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Purity %	Typical Nitrogen ¹⁾ flow rate in m ³ /hr ²⁾ (SCFM)							
	99.5	99.0	98.0	97.0	96.0	95.0		
4 bar g	2.8	4.0	5.7	7.1	9.5	10.9		
(58 psi g)	(1.6)	(2.4)	(3.4)	(4.2)	(5.6)	(6.4)		
5 bar g	3.7	5.3	7.9	10.2	12.8	15.2		
(72.5 psi g)	(2.2)	(3.1)	(4.6)	(6)	(7.5)	(8.9)		
6 bar g	4.7	7.0	10.2	13.0	15.7	20.5		
(87 psi g)	(2.8)	(4.1)	(6)	(7.7)	(9.2)	(12.1)		
7 bar g	6.1	8.5	12.3	16.5	19.5	24.3		
(101.5 psi g)	(3.6)	(5)	(7.2)	(9.7)	(11.5)	(14.3)		
8 bar g	6.9	9.7	14.3	20.2	23.3	28.1		
(116 psi g)	(4.1)	(5.7)	(8.4)	(11.9)	(13.7)	(16.5)		
9 bar g	7.8	11.1	17.0	22.2	27.0	32.2		
(130.5 psi g)	(4.6)	(6.5)	(10)	(13.1)	(15.9)	(19)		
10 bar g	8.6	12.6	18.5	24.2	30.2	37.4		
(145 psi g)	(5.1)	(7.4)	(10.9)	(14.2)	(17.8)	(22)		
11 bar g	9.6	14.2	20.7	27.3	33.0	41.0		
(159.5 psi g)	(5.7)	(8.4)	(12.2)	(16.1)	(19.4)	(24.1)		
12 bar g	10.5	15.2	22.9	29.5	36.6	45.6		
(174 psi g)	(6.2)	(8.9)	(13.5)	(17.4)	(21.5)	(26.8)		
13 bar g	11.3	16.3	24.9	32.0	39.5	48.8		
(188.5 psi g)	(6.7)	(9.6)	(14.7)	(18.8)	(23.2)	(28.7)		

Maximum pressure drop at Purity <0.2 bar

Values between brackets are indicative of imperial values

¹⁾ The above data represents the typical performance of a single membrane module. Actual performance can vary depending on factors such as feed air pressure and temperature. Please contact your Parker go to person for actual performance information

²⁾ m³/hr refers to conditions at 1013 mbar(a) and 20°C

²⁾ m³/hr refers to conditions at 1013 mbar(a) and For purities >99.5% please contact Parker

Ambient Conditions

Ambient temperature	+2°C to +50°C (+36°F to 122°F)
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

Maximum operating pressure	13.0 bar g (190 psi g)
Min. / Max. operating temperature	+2°C / +50°C (+36°F to 122°F)
Maximum oil vapour content	<0.01 mg/m ³ (<0.01 ppm (w))
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed-air temperatures other than 20°C	Use bulletin S3.1.240*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.240*

* Revision number may vary, make sure to use the most recent revision

Note

Parker membrane systems produce both nitrogen and oxygen enriched air. Nitrogen enriched air can cause suffocation and oxygen enriched air causes increased fire hazards. The oxygen enriched air is available at ambient pressure and pressure build-up of enriched oxygen at the outlet must be prevented, otherwise a serious (reversible) decrease in performance will result. The nitrogen enriched air produced should be treated as pressurised air.

Purity %	Typica	l Feed-air	consump in m³/hr²		rogen flov	v rate
	99.5	99.0	98.0	97.0	96.0	95.0
4 bar g	21	21	22	22	26	27
(58 psi g)	(12)	(12)	(13)	(13)	(15)	(16)
5 bar g	24	26	29	31	34	36
(72.5 psi g)	(14)	(15)	(17)	(18)	(20)	(21)
6 bar g	29	33	36	38	41	48
(87 psi g)	(17)	(19)	(21)	(22)	(24)	(28)
7 bar g	36	38	41	48	50	56
(101.5 psi g)	(21)	(22)	(24)	(28)	(29)	(33)
8 bar g	38	42	47	56	58	63
(116 psi g)	(22)	(25)	(28)	(33)	(34)	(37)
9 bar g	44	48	55	62	67	72
(130.5 psi g)	(26)	(28)	(32)	(36)	(39)	(42)
10 bar g	50	56	61	68	75	84
(145 psi g)	(29)	(33)	(36)	(40)	(44)	(49)
11 bar g	51	60	66	74	80	91
(159.5 psi g)	(30)	(35)	(39)	(44)	(47)	(54)
12 bar g	57	65	76	83	92	103
(174 psi g)	(34)	(38)	(45)	(49)	(54)	(61)
13 bar g	66	72	85	92	101	113
(188.5 psi)	(39)	(42)	(50)	(54)	(59)	(67)

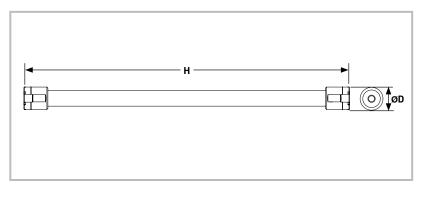
Mechanical Design Housing

Design pressure	15 bar g ⁴⁾ (217 psi g) ⁴⁾
Design temperature	65°C ⁴⁾ (149°F) ⁴⁾

⁴⁾ Membrane ambient and operating conditions are lower

Material

Housing	Aluminum
Coating	ESPC to RAL 7039 (Quartz Grey) Dry Film Thickness: 60 micron


Services on Request

Material certificates EN10204-3.1 on housing material (for Stainless Steel only) 3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x Ø D	1655 x 114 mm (65.12" x 4.49")
Weight	6.8 kg (15 lb)
Connection feed-air	G¾ female to ISO 228
Connection nitrogen enriched air	G¾ female to ISO 228
Connection oxygen enriched air at atmospheric pressure	G1 female to ISO 228
Dimensional drawing	Refer to K3.1.330

SmartFluxx SA1508SS

Typical Feed-air consumption at nitrogen flow rate

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Purity %	Typical Nitrogen ¹⁾ flow rate in m ³ /hr ²⁾ (SCFM)					
	99.5	99.0	98.0	97.0	96.0	95.0
4 bar g	2.8	4.0	5.7	7.1	9.5	10.9
(58 psi g)	(1.6)	(2.4)	(3.4)	(4.2)	(5.6)	(6.4)
5 bar g	3.7	5.3	7.9	10.2	12.8	15.2
(72.5 psi g)	(2.2)	(3.1)	(4.6)	(6)	(7.5)	(8.9)
6 bar g	4.7	7.0	10.2	13.0	15.7	20.5
(87 psi g)	(2.8)	(4.1)	(6)	(7.7)	(9.2)	(12.1)
7 bar g	6.1	8.5	12.3	16.5	19.5	24.3
(101.5 psi g)	(3.6)	(5)	(7.2)	(9.7)	(11.5)	(14.3)
8 bar g	6.9	9.7	14.3	20.2	23.3	28.1
(116 psi g)	(4.1)	(5.7)	(8.4)	(11.9)	(13.7)	(16.5)
9 bar g	7.8	11.1	17.0	22.2	27.0	32.2
(130.5 psi g)	(4.6)	(6.5)	(10)	(13.1)	(15.9)	(19)
10 bar g	8.6	12.6	18.5	24.2	30.2	37.4
(145 psi g)	(5.1)	(7.4)	(10.9)	(14.2)	(17.8)	(22)
11 bar g	9.6	14.2	20.7	27.3	33.0	41.0
(159.5 psi g)	(5.7)	(8.4)	(12.2)	(16.1)	(19.4)	(24.1)
12 bar g	10.5	15.2	22.9	29.5	36.6	45.6
(174 psi g)	(6.2)	(8.9)	(13.5)	(17.4)	(21.5)	(26.8)
13 bar g	11.3	16.3	24.9	32.0	39.5	48.8
(188.5 psi g)	(6.7)	(9.6)	(14.7)	(18.8)	(23.2)	(28.7)

Maximum pressure drop at Purity <0.2 bar Values between brackets are indicative of imperial values

¹⁾ The above data represents the typical performance of a single membrane module. Actual performance can vary depending on factors such as feed air pressure and temperature. Please contact your Parker go to person for actual performance information to meet your application's requirements. ²⁾ m³/hr refers to conditions at 1013 mbar(a) and 20°C

 $^{2)}\,m^3/hr$ refers to conditions at 1013 mbar(a) and 20° For purities >99.5% please contact Parker

Ambient Conditions

Ambient temperature	+2°C to +50°C (+36°F to 122°F)
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

Maximum operating pressure	13.0 bar g (190 psi g)
Min. / Max. operating temperature	+2°C to +50°C (+36°F to 122°F)
Maximum oil vapour content	<0.01 mg/m ³ (<0.01 ppm (w))
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed-air temperatures other than 20°C	Use bulletin S3.1.240*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.240*

* Revision number may vary, make sure to use the most recent revision

in m³/hr² (SCFM) Purity % 99.5 99.0 98.0 97.0 96.0 95.0 4 bar g (58 psi g) 21 (12) 22 (13) 22 (13) 26 (15) 27 (16) (12) 5 bar g (72.5 psi g) 26 (15) 24 (14) 29 (17) 31 (18) 34 (20) 36 (21) 6 bar g (87 psi g) 29 (17) 33 (19) 36 (21) 38 (22) 41 (24) 48 (28) 38 (22) 41 (24) 48 (28) 50 (29) 56 (33) 7 bar g (101.5 psi g) 36 (21(42 (25) 63 (37) 56 (33) 58 (34) 8 bar g (116 psi g) 38 (22) 47 (28 9 bar g (130.5 psi g) 48 (28) 55 (32) 67 (39) 44 (26) 62 (36) 72 (42) 10 bar g (145 psi g) 56 (33) 61 (36) 68 (40) 84 (44) 50 (29) 75 (75) 66 (39) 91 (54) 11 bar g (159.5 psi g) 60 (35) 74 (44) 51 (30) 80 (47) 12 bar g (174 psi g) 103 65 83 (49) 92 57 76 (34) (38) (45) (54) (61) 13 bar g (188.5 psi g) 66 (39) 72 (42) 85 (50) 92 (54) 101 (59) 113 (67)

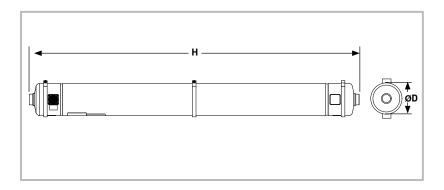
Mechanical Design Housing

Design pressure	15 bar g ⁴⁾ (217 psi g) ⁴⁾
Design temperature	65°C ⁴⁾ (149°F) ⁴⁾

⁴⁾ Membrane operating limits are lower

Material

Housing	Stainless Steel
Coating	None


Services on Request

Material certificates EN10204-3.1 on housing material (for Stainless Steel only)
(IOI Stainless Steel Only)
3D model CAD STEP file

Weight, Dimensions and Connections

·····	
Dimensions H x Ø D	1654 x 114 mm (65.12" x 4.49")
Weight	18 kg (40 lb)
Connection feed-air	G¾ female to ISO 228
Connection nitrogen enriched air	G¾ female to ISO 228
Connection oxygen enriched air at atmospheric pressure	G1 female to ISO 228
Dimensional drawing	Refer to K3.1.330

Note

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Purity %	Typical ¹⁾ Nitrogen flow rate in m ³ /hr ²⁾ (SCFM)				
Purity %	99	98	97	96	95
4 bar g	21.8	29.6	37.4	48.4	59.5
(58 psi g)	(12.8)	(17.4)	(22.0)	(28.5)	(35.0)
5 bar g	29.5	42.5	55.5	69.4	83.2
(73 psi g)	(17.3)	(25.0)	(32.7)	(40.8)	(49.0)
6 bar g	36.8	54.6	72.3	89.1	105.9
(87 psi g)	(21.7)	(32.1)	(42.6)	(52.5)	(62.4)
7 bar g	43.9	65.8	87.8	107.8	127.7
(102 psi g)	(25.8)	(38.8)	(51.7)	(63.4)	(75.2)
8 bar g	50.7	76.3	102.0	125.3	148.6
(116 psi g)	(29.8)	(44.9)	(60.0)	(73.7)	(87.5)
9 bar g	57.2	86.0	114.8	141.6	168.5
(130 psi g)	(33.6)	(50.6)	(67.6)	(83.4)	(99.2)
10 bar g	63.3	94.8	126.4	156.9	187.4
(145 psi g)	(37.3)	(55.8)	(74.4)	(92.3)	(110.3)
11 bar g	69.2	102.9	136.6	171.0	205.4
(160 psi g)	(40.7)	(60.6)	(80.4)	(100.6)	(120.9)
12 bar g	74.8	110.1	145.5	183.9	222.4
(174 psi g)	(44.0)	(64.8)	(85.6)	(108.3)	(130.9)
13 bar g	80.1	116.6	153.1	195.8	238.5
(189 psi g)	(47.1)	(68.6)	(90.1)	(115.2)	(140.3)

Durity 0/	Typical Feed-air consumption at nitrogen flow rate in m ³ /hr ² (SCFM)						
Purity %	99	98	97	96	95		
4 bar g	116	116	120	141	155		
(58 psi g)	(68)	(69)	(71)	(83)	(91)		
5 bar g	152	164	176	198	211		
(73 psi g)	(90)	(96)	(104)	(116)	(124)		
6 bar g	186	206	226	249	262		
(87 psi g)	(109)	(121)	(133)	(147)	(154)		
7 bar g	216	244	270	296	299		
(102 psi g)	(127)	(143)	(159)	(174)	(176)		
8 bar g	244	278	309	338	347		
(116 psi g)	(144)	(163)	(182)	(199)	(204)		
9 bar g	271	308	342	376	392		
(130 psi g)	(159)	(181)	(201)	(221)	(231)		
10 bar g	298	334	371	410	431		
(145 psi g)	(175)	(197)	(218)	(241)	(254)		
11 bar g	325	360	396	445	472		
(160 psi g)	(191)	(212)	(233)	(262)	(278)		
12 bar g	352	386	422	478	511		
(174 psi g)	(207)	(227)	(248)	(281)	(301)		
13 bar g	376	408	444	509	548		
(189 psi g)	(222)	(240)	(261)	(300)	(323)		

Maximum pressure drop at Purity: ≤0.2 bar

Values between brackets are indicative imperial values

¹⁾ The above data represents the typical performance of a single membrane module. Actual performance can vary depending on factors such as feed air condition and is depending on temperature see Flow Rate Correction below.

Ambient Conditions

Ambient temperature	+2°C to +60°C (+36°F to 140°F)
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Operating Conditions Feed-air

Maximum operating pressure	13 bar g (190 psi g)
Min. / Max. operating temperature	+2°C / +60°C (+36°F to 140°F)
Maximum oil vapour content	<0.01 mg/m ³ (<0.01 ppm (w))
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed-air temperatures other than 20°C	Use bulletin S3.1.240 ³⁾
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.240 ³⁾

³⁾ Revision number may vary, make sure to use the most recent revision

Mechanical Design Housing

Design pressure	15 bar g (217 psi g)4)
Design temperature	65°C (149°F) ⁴)

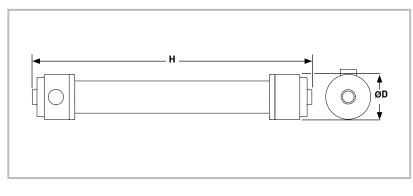
⁴⁾ Membrane operating limits are lower

Note

Parker membrane systems produce both nitrogen and oxygen enriched air. Nitrogen enriched air can cause suffocation and oxygen enriched air causes increased fire hazards. The oxygen enriched air is available at ambient pressure and pressure build-up of enriched oxygen at the outlet must be prevented, otherwise a serious (reversible) decrease in performance will result. The nitrogen enriched air produced should be treated as pressurised air.

²⁾ m³/hr refers to conditions at 1013 mbar(a) and 20°C ³⁾ Performance certificates available up to 11 barg.

Material


Housing	Aluminum
Coating	Sulfuric Acid Anodizing [MIL-A-8625F, Type II]

Services Available on Request

Material certificates EN10204-2.2 on request 3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x Ø D	1750 x 256/198 mm (68.9" x 10.1/7.8")
Weight	22.2 kg (48.9 lb)
Connection feed-air	G1½" female to ISO 228
Connection nitrogen enriched air	G1½" female to ISO 228
Connection oxygen enriched air at atmospheric pressure	Dual Hose Connection 1¾" (Adapter OD = 45mm)
Dimensional drawing	Refer to K3.1.415

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Purity %	Typical Nitrogen ¹⁾ flow rate in m³/hr² ⁾ (SCFM)					
	99.5	99.0	98.0	97.0	96.0	95.0
4 bar g	17	25	36	47	57	70
(58 psi g)	(10)	(15)	(21)	(28)	(34)	(41)
5 bar g	23	33	49	66	82	93
(72.5 psi g)	(14)	(19)	(29)	(39)	(48)	(55)
6 bar g	29	43	63	83	102	120
(87 psi g)	(17)	(25)	(37)	(49)	(60)	(71)
7 bar g	37	53	78	100	125	154
(101.5 psi g)	(22)	(31)	(46)	(59)	(74)	(91)
8 bar g	44	62	90	117	144	178
(116 psi g)	(26)	(36)	(53)	(69)	(85)	(105)
9 bar g	49	72	103	133	165	216
(130.5 psi g)	(29)	(42)	(61)	(78)	(97)	(127)

Purity %	r	Typical Feed-air consumption at nitrogen flow rate in m ³ /hr ²⁾ (SCFM)				
	99.5	99.0	98.0	97.0	96.0	95.0
4 bar g	127	126	135	145	155	169
(58 psi g)	(75)	(74)	(79)	(85)	(91)	(99)
5 bar g	144	155	171	194	216	218
(72.5 psi g)	(85)	(91)	(101)	(114)	(127)	(128)
6 bar g	170	191	214	239	261	276
(87 psi g)	(100)	(112)	(126)	(141)	(154)	(162)
7 bar g	202	223	258	281	315	348
(101.5 psi g)	(119)	(131)	(152)	(165)	(185)	(205)
8 bar g	232	255	293	323	361	399
(116 psi g)	(137)	(150)	(172)	(190)	(212)	(235)
9 bar g	264	298	335	369	413	485
(130.5 psi g)	(155)	(175)	(197)	(217)	(243)	(285)

Maximum pressure drop at Purity: ≤0.2 bar Values between brackets are indicative imperial values"

The above data represents the typical performance of a single membrane module. Actual performance can vary depending on factors such as feed air pressure and temperature. Please contact your Parker go to person for actual performance information to meet your application's requirements.

 $^{2)}\,$ m³/hr refers to conditions at 1013 mbar(a) and 20°C For higher purities please contact Parker

Ambient Conditions

Ambient temperature	+2°C to +50°C (+36°F to 122°F)
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Operating Conditions Feed-air

Maximum operating pressure	9.0 bar g (130.5 psi g)
Min. / Max. operating temperature	+2°C to +50°C (+36°F to 122°F)
Maximum oil vapour content	<0.01 mg/m ³ (<0.01 ppm (w))
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed-air temperatures other than 20°C	Use bulletin S3.1.240 ³⁾
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.240 ³⁾

³⁾ Revision number may vary, make sure to use the most recent revision

Mechanical Design Housing

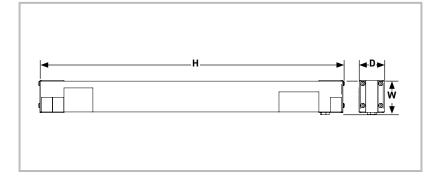
Design pressure	14 bar g4 (203 psi g)4
Design temperature	65°C ⁴⁾ (149°F) ⁴⁾
8	

4) Membrane operating limits are lower

Material

Housing	Aluminum
Coating	ESPC to RAL 7039 (Quartz Grey) Dry Film Thickness: 60 micron

Services Available on Request


3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x Ø D	1740 x 280 mm (68.50" x 11.02")
Weight	46 kg (102 lb)
Connection feed-air	G2½ female to ISO 228
Connection nitrogen enriched air	G2½ female to ISO 228
Connection oxygen enriched air at atmospheric pressure	100mm (3.94") OD
Dimensional drawing	Refer to K3.1.339

Note

HiFluxx ST304

Purity	Typica	I ¹⁾ Nitrogen	flow rate i	n m³/hr²) (S	CFM)
% ¹	99	98	97	96	95
4 bar g	0.15	0.27	0.39	0.50	0.62
5 bar g	0.19	0.34	0.48	0.62	0.78
6 bar g	0.25	0.45	0.62	0.80	0.98
7 bar g	0.29	0.52	0.73	0.93	1.14
8 bar g	0.33	0.60	0.83	1.06	1.31
9 bar g	0.39	0.70	0.95	1.23	1.52
10 bar g	0.41	0.75	1.04	1.33	1.64
11 bar g	0.43	0.82	1.15	1.48	1.83
12 bar g	0.45	0.89	1.25	1.63	2.02

Purity %	Typical Feed-	air consumpti	on at nitrogen	flow rate in m	n ³ /hr ²⁾ (SCFM)
Fully /0	99	98	97	96	95
4 bar g	1.16	1.29	1.43	1.54	1.69
5 bar g	1.44	1.61	1.78	1.92	2.11
6 bar g	1.73	1.98	2.18	2.39	2.65
7 bar g	2.02	2.31	2.55	2.79	3.09
8 bar g	2.31	2.64	2.91	3.19	3.53
9 bar g	2.70	3.06	3.33	3.69	4.10
10 bar g	2.89	3.30	3.64	3.99	4.42
11 bar g	3.45	3.85	4.24	4.58	4.94
12 bar g	3.60	4.17	4.63	5.04	5.46

Maximum pressure drop <0.3 bar.

Maximum nitrogen flow rate = minimum flow rate + 30%

1. Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100%. Air is composed of nitrogen (78.1%), oxygen (20.9%), Argon (0.9%), CO₂ (0.03%), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

 $^{2\cdot}$ m³/hr refers to conditions at 1013 mbar(a) and 20°C

Ambient Conditions

Ambient temperature	+2°C to +45°C*
Ambient pressure	atmospheric
Air quality	clean air without contaminants
*Maximum inlet temperature 35°C when operating	at 13 bar a

°C when operating at 13 bar g

Feed-air Conditions

Maximum operating pressure	13 bar g**
Min. / Max. operating temperature	+2°C / +45°C*
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

*Maximum inlet temperature, 35°C when operating at 13 bar g. **Maximum inlet pressure, 10 bar g when operating at 45°C.

Flow Rate Corrections

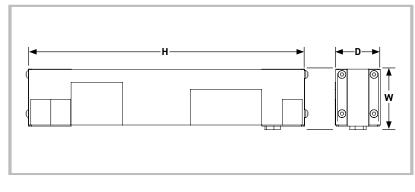
Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.059*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.059*

*version number may vary, make sure to use the most recent version

Material Housing

Services on Request

3D model CAD STEP file


Weight, Dimensions and Connections

÷	
Dimensions H x W x D	386 x 80 x 63 mm
Weight	2.3 kg
Connection inlet / outlet	G¾ female
Vent	G¾ female
Dimensional drawing	Refer to K3.1.348

Aluminum

Note

HiFluxx DT304

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

\mathbf{D} with $\mathbf{r} = 0/1$	Туріс	al ¹⁾ Nitro	gen flow	rate in m ^a	³ /hr ²⁾ (SCF	FM)	Density 0/	Typical Feed-air consumption at nitrogen flow rate in m ³ /hr ² (SCFM)						
Purity % ¹	99.5	99	98	97	96	95	Purity %	99.5	99	98	97	96	95	
4 bar g	0.29	0.47	0.75	1.00	1.26	1.55	4 bar g	2.56	2.78	3.16	3.41	3.77	4.03	
5 bar g	0.36	0.59	0.94	1.25	1.57	1.94	5 bar g	3.20	3.47	3.95	4.26	4.72	5.04	
6 bar g	0.47	0.75	1.19	1.61	2.00	2.43	6 bar g	3.93	4.29	4.89	5.30	5.80	6.32	
7 bar g	0.55	0.88	1.39	1.87	2.33	2.84	7 bar g	4.58	5.00	5.70	6.18	6.76	7.37	
8 bar g	0.62	1.00	1.59	2.14	2.67	3.24	8 bar g	5.24	5.72	6.52	7.06	7.73	8.43	
9 bar g	0.71	1.14	1.79	2.44	3.03	3.68	9 bar g	5.93	6.53	7.33	8.05	8.78	9.57	
10 bar g	0.78	1.25	1.99	2.68	3.33	4.05	10 bar g	6.55	7.14	8.15	8.83	9.66	10.5	
11 bar g	0.83	1.35	2.14	2.89	3.63	4.44	11 bar g	7.50	8.13	9.22	10.1	10.9	11.5	
12 bar g	0.89	1.46	2.30	3.11	3.94	4.83	12 bar g	7.99	8.73	9.89	10.9	11.8	12.5	

Maximum pressure drop <0.8 bar.

Maximum nitrogen flow rate = minimum flow rate + 10%

^{1.} Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100%. Air is composed of nitrogen (78.1%), oxygen (20.9%), Argon (0.9%), CO₂ (0.03%), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

^{2.} m³/hr refers to conditions at 1013 mbar(a) and 20°C

Ambient Conditions

Ambient temperature	+2°C to +45°C*
Ambient pressure	atmospheric
Air quality	clean air without contaminants

*Maximum inlet temperature, 35°C when operating at 13 bar g.

Feed-air Conditions

Maximum operating pressure	13 bar g**
Min. / Max. operating temperature	+2°C / +45°C*
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)
	•

*Maximum inlet temperature, 35°C when operating at 13 bar g. **Maximum inlet pressure, 10 bar g when operating at 45°C.

Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.059*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.059*

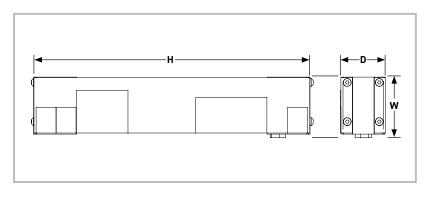
*version number may vary, make sure to use the most recent version

Material Housing

Services on Request

3D model CAD STEP file

Weight, Dimensions and Connections


Dimensions H x W x D	386 x 145 x 63 mm
Weight	4.0 kg
Connection inlet / outlet	G¾ female
Vent	G¾ female
Dimensional drawing	Refer to K3.1.349

Note

Parker membrane systems produce both nitrogen and oxygen enriched air. Nitrogen enriched air can cause suffocation and oxygen enriched air causes increased fire hazards. The oxygen enriched air is available at ambient pressure and pressure build-up of enriched oxygen at the outlet must be prevented, otherwise a serious (reversible) decrease in performance will result. The nitrogen enriched air produced should be treated as pressurised air.

Aluminum

HiFluxx TT304

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Density $0/1$	Μ	linimum r	nitrogen f	low rate i	n m³/hr ²	2 Feed-air consumption at minimum nitrogen flow rate in m ³ /hr								
Purity % ¹	99.5	99	98	97	96	95	Purity %	99.5	99	98	97	96	95	
4 bar g	0.50	0.74	1.13	1.49	1.79	2.28	4 bar g	3.82	4.17	4.63	5.06	5.37	5.92	
5 bar g	0.62	0.93	1.41	1.86	2.24	2.85	5 bar g	4.78	5.21	5.79	6.33	6.71	7.40	
6 bar g	0.77	1.17	1.78	2.36	2.93	3.55	6 bar g	5.93	6.46	7.12	7.78	8.48	9.23	
7 bar g	0.90	1.37	2.08	2.75	3.41	4.14	7 bar g	6.92	7.53	8.30	9.07	9.90	10.8	
8 bar g	1.03	1.57	2.37	3.14	3.90	4.73	8 bar g	7.91	8.61	9.49	10.4	11.3	12.3	
9 bar g	1.16	1.73	2.66	3.54	4.45	5.39	9 bar g	9.01	9.71	10.9	11.7	12.9	14.0	
10 bar g	1.28	1.96	2.97	3.93	4.88	5.92	10 bar g	10.0	11.0	12.2	13.0	14.1	15.4	
11 bar g	1.36	2.07	3.19	4.25	5.32	6.48	11 bar g	11.6	12.4	13.7	14.9	16.0	17.5	
12 bar g	1.43	2.18	3.41	4.57	5.77	7.05	12 bar g	12.2	13.1	14.7	16.0	17.3	19.0	

Maximum pressure drop < 0.8 bar.

Maximum nitrogen flow rate = minimum flow rate + 10%

^{1.} Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100%. Air is composed of nitrogen (78.1%), oxygen (20.9%), Argon (0.9%), CO₂ (0.03%), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

^{2.} m³/hr refers to conditions at 1013 mbar(a) and 20°C

Ambient Conditions

Ambient temperature	+2°C to +45°C*				
Ambient pressure	atmospheric				
Air quality clean air without contaminant					
*Maximum inlat temperature 25°C when an arcting at 10 hours					

*Maximum inlet temperature, 35°C when operating at 13 bar g.

Feed-air Conditions

Maximum operating pressure	13 bar g**
Min. / Max. operating temperature	+2°C / +45°C*
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

*Maximum inlet temperature, 35°C when operating at 13 bar g. **Maximum inlet pressure, 10 bar g when operating at 45°C.

Flow Rate Corrections

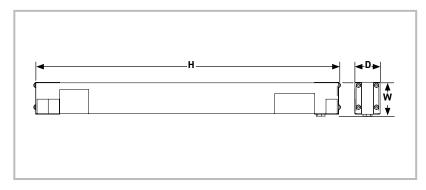
Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.059*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.059*

*Revision number may vary, make sure to use the most recent revision.

*Revision number may vary, make sure to use the most recent Revision

Material Housing

Services on Request


Weight, Dimensions and Connections

Dimensions H x W x D	388 x 200 x 63 mm
Weight	5.7 kg
Connection inlet / outlet	G¾ female
Vent	G¾ female
Dimensional drawing	Refer to K3.1.352

Aluminum

Note

HiFluxx ST504

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Purity % ¹	Mir	Minimum nitrogen flow rate in m ³ /hr ²						
	99	98	97	96	95			
4 bar g	0.20	0.33	0.47	0.61	0.75			
5 bar g	0.27	0.46	0.65	0.84	1.03			
6 bar g	0.36	0.60	0.83	1.07	1.31			
7 bar g	0.41	0.71	1.01	1.29	1.57			
8 bar g	0.48	0.83	1.18	1.52	1.86			
9 bar g	0.55	0.95	1.35	1.75	2.14			
10 bar g	0.62	1.07	1.52	1.96	2.39			
11 bar g	0.68	1.19	1.69	2.17	2.65			
12 bar g	0.75	1.30	1.86	2.38	2.90			
13 bar g	0.81	1.42	2.04	2.59	3.15			

Purity % ¹	Feed-air co	nsumption at	minimum nit	rogen flow rat	e in m³/hr ²
	99	98	97	96	95
4 bar g	1.57	1.70	1.84	2.01	2.17
5 bar g	1.94	2.12	2.37	2.63	2.82
6 bar g	2.38	2.56	3.00	3.31	3.53
7 bar g	2.78	3.06	3.54	3.81	4.17
8 bar g	3.24	3.55	4.13	4.45	4.91
9 bar g	3.73	4.06	4.72	5.12	5.66
10 bar g	4.23	4.60	5.33	5.77	6.35
11 bar g	4.78	5.19	5.97	6.46	7.06
12 bar g	5.39	5.83	6.64	7.21	7.78
13 bar g	6.07	6.55	7.36	8.03	8.53

Maximum pressure drop <0.3 bar.

Maximum nitrogen flow rate = minimum flow rate + 30%.

^{1.} Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100%. Air is composed of nitrogen (78.1%), oxygen (20.9%), Argon (0.9%), CO₂ (0.03%), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

^{2.} m³/hr refers to conditions at 1013 mbar(a) and 20°C

Ambient Conditions

Ambient temperature	+2°C to +45°C*
Ambient pressure	atmospheric
Air quality	clean air without contaminants

*Maximum inlet temperature, 35°C when operating at 13 bar g.

Feed-air Conditions

Maximum operating pressure	13 bar g**
Min. / Max. operating temperature	+2°C to +45°C*
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

*Maximum inlet temperature, 35°C when operating at 13 bar g. **Maximum inlet pressure, 10 bar g when operating at 45°C.

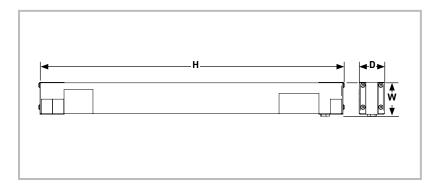
Flow Rate Corrections

Nitrogen flow rate at feed-air temperatures other than 20°C	Use bulletin S3.1.059 [*]
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.059 [*]

Material

Housing	Steel
Tube	Aluminum
Coating (housing)	ESPC to RAL 7035 (Light Grey)
Coating (tube)	None

Services Available on Request


3D model CAD STEP file	
Test Report	

Weight, Dimensions and Connections

-	
Dimensions H x W x D	520 x 80 x 63 mm
Weight	2.6 kg
Connection feed-air	G¾ female to ISO 228
Connection nitrogen enriched air	G3% female to ISO 228
Connection oxygen enriched air at atmospheric pressure	G¾ female to ISO 228
Dimensional drawing	Refer to K3.1.380

Note

HiFluxx ST604

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Durity 0/1	Minimum nitrogen flow rate in m ³ /hr ²									
Purity % ¹	99	98	97	96	95					
4 bar g	0.39	0.65	0.88	1.11	1.40					
5 bar g	0.48	0.81	1.10	1.39	1.74					
6 bar g	0.61	1.05	1.42	1.80	2.19					
7 bar g	0.72	1.22	1.66	2.10	2.56					
8 bar g	0.82	1.39	1.90	2.40	2.92					
9 bar g	0.93	1.61	2.19	2.77	3.39					
10 bar g	1.02	1.74	2.37	3.00	3.65					
11 bar g	1.12	1.91	2.62	3.33	4.07					
12 bar g	1.22	2.09	2.87	3.66	4.48					

Purity %	Feed-air consumption at minimum nitrogen flow rate in m ³ /hr ²										
Purity 70	99	98	97	96	95						
4 bar g	2.47	2.80	3.09	3.34	3.63						
5 bar g	3.08	3.50	3.86	4.17	4.53						
6 bar g	3.81	4.39	4.83	5.21	5.70						
7 bar g	4.44	5.12	5.64	6.08	6.65						
8 bar g	5.08	5.86	6.44	6.95	7.60						
9 bar g	5.86	6.74	7.46	8.04	8.82						
10 bar g	6.45	7.32	8.06	8.69	9.50						
11 bar g	7.41	8.42	9.16	9.98	10.6						
12 bar g	8.05	9.18	10.0	11.0	11.7						

Maximum pressure drop <0.3 bar.

Maximum nitrogen flow rate = minimum flow rate + 30%

^{1.} Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100%. Air is composed of nitrogen (78.1%), oxygen (20.9%), Argon (0.9%), CO₂ (0.03%), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

^{2.} m³/hr refers to conditions at 1013mbar(a) and 20°C

Ambient Conditions

Ambient temperature	+2°C to +45°C*
Ambient pressure	atmospheric
Air quality	clean air without contaminants

*Maximum inlet temperature, 35°C when operating at 13 bar g.

Feed-air Conditions

Maximum operating pressure	13 bar g**
Min. / Max. operating temperature	+2°C / +45°C*
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

*Maximum inlet temperature, 35°C when operating at 13 bar g. **Maximum inlet pressure, 10 bar g when operating at 45°C.

Flow Rate Corrections

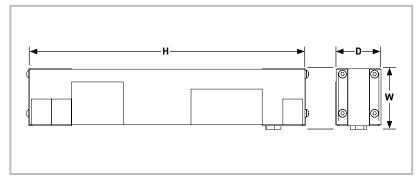
Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.059*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.059*

*Revision number may vary, make sure to use the most recent Revision

Material

Housing

Services on Request


3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x W x D	757 x 80 x 63 mm
Weight	3.2 kg
Connection inlet / outlet	G¾ female
Vent	G¾ female
Dimensional drawing	Refer to K3.1.344

Aluminum

HiFluxx DT604

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

	Minimum nitrogen flow rate in m ³ /hr ²		Durity 0/	Feed-air consumption at minimum nitrogen flow rate in m ³ /hr ²										
Purity % ¹	99.5	99	98	97	96	95		Purity %	99.5	99	98	97	96	95
4 bar g	1.05	1.55	2.32	3.06	3.75	4.49		4 bar g	8.21	8.68	9.51	10.4	11.2	12.1
5 bar g	1.32	1.94	2.90	3.83	4.69	5.62		5 bar g	10.3	10.8	11.9	13.0	14.1	15.2
6 bar g	1.62	2.41	3.64	4.82	6.02	7.20		6 bar g	12.5	13.5	14.9	16.4	17.4	18.7
7 bar g	1.89	2.81	4.25	5.62	7.02	8.40		7 bar g	14.6	15.8	17.4	19.1	20.4	21.8
8 bar g	2.16	3.22	4.85	6.42	8.02	9.60		8 bar g	16.7	18.0	19.9	21.8	23.3	25.0
9 bar g	2.41	3.60	5.54	7.23	8.97	11.1		9 bar g	19.3	20.5	22.7	24.6	26.9	28.8
10 bar g	2.71	4.02	6.07	8.03	10.0	12.0		10 bar g	21.6	22.9	24.9	27.3	30.1	31.2
11 bar g	2.89	4.31	6.62	8.80	10.9	13.2		11 bar g	24.6	26.3	28.5	30.8	33.8	35.6
12 bar g	3.07	4.60	7.17	9.58	11.8	14.3		12 bar g	26.1	28.1	30.8	33.5	36.5	38.7

Maximum pressure drop <0.8 bar.

Maximum nitrogen flow rate = minimum flow rate + 10%

^{1.} Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9%), Argon (0.9%), CO₂ (0.03%), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

^{2.} m³/hr refers to conditions at 1013mbar(a) and 20°C

Ambient Conditions

Ambient temperature	+2°C to +45°C*
Ambient pressure	atmospheric
Air quality	clean air without contaminants

*Maximum inlet temperature, 35°C when operating at 13 bar g.

Feed-air Conditions

Maximum operating pressure	13 bar g**
Min. / Max. operating temperature	+2°C / +45°C*
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

*Maximum inlet temperature, 35°C when operating at 13 bar g. **Maximum inlet pressure, 10 bar g when operating at 45°C.

Flow Rate Corrections

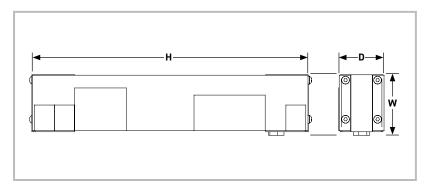
Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.059*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.059*

*Revision number may vary, make sure to use the most recent Revision

Material

Housing	Aluminum
---------	----------

Services on Request


Material certificates EN10204-3.1 on housing material (for Stainless Steel only) 3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x W x D	758 x 145 x 63 mm
Weight	6.0 kg
Connection inlet / outlet	G% female
Vent	G% female
Dimensional drawing	Refer to K3.1.350

Note

HiFluxx TT604

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

D	I	Minimum	nitrogen	flow rate	in m³/hr	2				consumptio	n at minim	um nitroge	n flow rate i	n m³/hr ²
Purity % ¹	99.5	99	98	97	96	95	P	Purity %	99.5	99	98	97	96	95
4 bar g	1.05	1.55	2.32	3.06	3.75	4.49	4	bar g	8.21	8.68	9.51	10.4	11.2	12.1
5 bar g	1.32	1.94	2.90	3.83	4.69	5.62	5	bar g	10.3	10.8	11.9	13.0	14.1	15.2
6 bar g	1.62	2.41	3.64	4.82	6.02	7.20	6	bar g	12.5	13.5	14.9	16.4	17.4	18.7
7 bar g	1.89	2.81	4.25	5.62	7.02	8.40	7	bar g	14.6	15.8	17.4	19.1	20.4	21.8
8 bar g	2.16	3.22	4.85	6.42	8.02	9.60	8	bar g	16.7	18.0	19.9	21.8	23.3	25.0
9 bar g	2.41	3.60	5.54	7.23	8.97	11.1	9	bar g	19.3	20.5	22.7	24.6	26.9	28.8
10 bar g	2.71	4.02	6.07	8.03	10.0	12.0	10	0 bar g	21.6	22.9	24.9	27.3	30.1	31.2
11 bar g	2.89	4.31	6.62	8.80	10.9	13.2	11	1 bar g	24.6	26.3	28.5	30.8	33.8	35.6
12 bar g	3.07	4.60	7.17	9.58	11.8	14.3	12	2 bar g	26.1	28.1	30.8	33.5	36.5	38.7

Maximum pressure drop < 0.8 bar.

Maximum nitrogen flow rate = minimum flow rate + 10%

^{1.} Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100%. Air is composed of nitrogen (78.1%), oxygen (20.9%), Argon (0.9%), CO₂ (0.03%), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

^{2.} m³/hr refers to conditions at 1013mbar(a) and 20°C

Ambient Conditions

Ambient temperature	+2°C to +45°C*
Ambient pressure	atmospheric
Air quality	clean air without contaminants

*Maximum inlet temperature, 35°C when operating at 13 bar g.

Feed-air Conditions

Maximum operating pressure	13 bar g**
Min. / Max. operating temperature	+2°C / +45°C*
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

*Maximum inlet temperature, 35°C when operating at 13 bar g. **Maximum inlet pressure, 10 bar g when operating at 45°C.

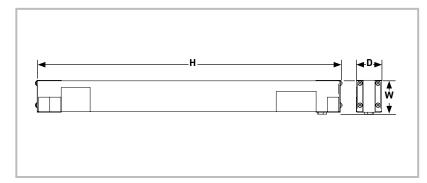
Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.059*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.059*

* Revision number may vary, make sure to use the most recent Revision

Material Housing Aluminum

Services on Request


3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x W x D	758 x 200 x 63 mm
Weight	8.3 kg
Connection inlet / outlet	G¾ female
Vent	G¾ female
Dimensional drawing	Refer to K3.1.353

Note

HiFluxx ST606

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Durity 0/1	Mi	nimum nitro	ogen flow r	ate in m ³ /hr	. 2
Purity % ¹	99	98	97	96	95
4 bar g	0.77	1.25	1.71	2.13	2.63
5 bar g	0.96	1.56	2.14	2.66	3.28
6 bar g	1.20	1.98	2.70	3.41	4.19
7 bar g	1.40	2.31	3.15	3.98	4.89
8 bar g	1.60	2.64	3.60	4.55	5.59
9 bar g	1.80	3.00	4.08	5.17	6.41
10 bar g	2.00	3.30	4.49	5.69	6.99
11 bar g	2.10	3.56	4.87	6.18	7.61
12 bar g	2.20	3.82	5.24	6.68	8.23

Purity %	Feed-air consumption at minimum nitrogen flow rate in m³/hr $^{\rm 2}$								
	99	98	97	96	95				
4 bar g	4.85	5.37	5.99	6.39	6.83				
5 bar g	6.07	6.72	7.49	7.99	8.54				
6 bar g	7.45	8.52	9.44	10.24	10.9				
7 bar g	8.69	9.94	11.0	11.9	12.7				
8 bar g	9.93	11.4	12.6	13.6	14.5				
9 bar g	11.3	12.9	14.3	15.5	16.7				
10 bar g	12.6	14.2	15.7	17.1	18.2				
11 bar g	14.5	16.0	17.5	19.2	20.5				
12 bar g	15.2	17.2	18.9	20.7	22.2				

Maximum pressure drop <0.3 bar.

Maximum nitrogen flow rate = minimum flow rate + 30%

^{1.} Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO₂ (0.03 %), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

^{2.} m³/hr refers to conditions at 1013mbar(a) and 20 °C

Ambient Conditions

Ambient temperature	+2°C to +50°C
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

Maximum operating pressure	13.0 bar g
Min. / Max. operating temperature	+2°C / +50°C
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

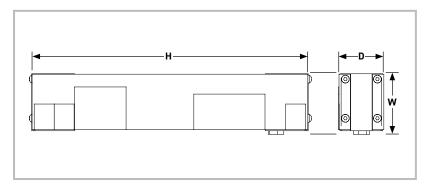
Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.059*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.059*

* Revision number may vary, make sure to use the most recent Revision

Material

Connection block	Aluminium
Tube	PVC

Services on Request


3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x W x D	751 x 110 x 84 mm
Weight	6.4 kg
Connection inlet / outlet	G½ female
Vent	G½ female
Dimensional drawing	Refer to K3.1.345

Note

HiFluxx TT606

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Purity % ¹	Minimum nitrogen flow rate in m ³ /hr ²					
Purity %	99.5	99	98	97	96	95
4 bar g	1.90	2.74	4.12	5.40	6.70	8.07
5 bar g	2.38	3.42	5.15	6.75	8.38	10.1
6 bar g	2.93	4.34	6.53	8.64	10.6	12.8
7 bar g	3.42	5.06	7.62	10.1	12.4	15.0
8 bar g	3.91	5.78	8.71	11.5	14.2	17.1
9 bar g	4.48	6.63	10.1	13.3	16.4	19.5
10 bar g	4.89	7.23	10.9	14.4	17.7	21.4
11 bar g	5.27	7.88	12.0	15.8	19.7	23.8
12 bar g	5.65	8.54	13.1	17.2	21.6	26.2

Durit 0/	Feed-air o	consumptio	on at minim	um nitroge	n flow rate	in m ³ /hr ²
Purity %	99.5	99	98	97	96	95
4 bar g	15.0	15.9	17.7	18.9	20.1	21.8
5 bar g	18.8	19.9	22.1	23.6	25.1	27.2
6 bar g	22.9	24.7	26.8	29.4	31.9	33.4
7 bar g	26.7	28.8	31.2	34.3	37.3	39.0
8 bar g	30.5	33.0	35.7	39.2	42.6	44.5
9 bar g	35.0	37.8	41.2	45.1	49.3	52.6
10 bar g	38.2	41.2	44.6	49.0	53.2	57.8
11 bar g	44.8	47.3	51.6	55.4	61.0	64.3
12 bar g	48.0	51.2	56.5	60.3	66.9	70.7

Maximum pressure drop <0.8 bar.

Maximum nitrogen flow rate = minimum flow rate + 10%

^{1.} Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO₂ (0.03 %), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

^{2.} m³/hr refers to conditions at 1013mbar(a) and 20 °C

Ambient Conditions

Ambient temperature	+2°C to +50°C
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

Maximum operating pressure	13.0 bar g
Min. / Max. operating temperature	+2°C / +50°C
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

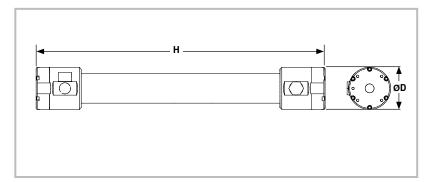
Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.059*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.059*

* Revision number may vary, make sure to use the most recent Revision

MaterialConnection blockAluminumTubePVC

Services on Request


3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x W x D	751 x 270 x 83 mm
Weight	15 kg
Connection inlet / outlet	G½ female
Vent	G½ female
Dimensional drawing	Refer to K3.1.354

Note

HiFluxx ST608

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Density 0/1	Minimum nitrogen flow rate in m ³ /hr ²				
Purity % ¹	99	98	97	96	95
4 bar g	1.34	2.25	3.07	3.87	4.82
5 bar g	1.67	2.81	3.84	4.84	6.02
6 bar g	2.14	3.72	4.99	6.48	7.91
7 bar g	2.49	4.34	5.82	7.56	9.23
8 bar g	2.85	4.96	6.65	8.65	10.6
9 bar g	3.36	5.81	7.85	10.0	12.2
10 bar g	3.56	6.21	8.32	10.8	13.2
11 bar g	4.01	6.96	9.46	12.2	14.9
12 bar g	4.46	7.71	10.6	13.5	16.6

Purity %	Feed-air consumption at minimum nitrogen flow rate in m³/hr ²						
	99	98	97	96	95		
4 bar g	9.08	10.1	11.1	12.0	13.0		
5 bar g	11.4	12.7	13.8	15.0	16.3		
6 bar g	14.1	16.0	17.5	19.5	20.6		
7 bar g	16.5	18.7	20.4	22.7	24.0		
8 bar g	18.8	21.3	23.3	25.9	27.4		
9 bar g	21.8	25.0	27.5	30.0	31.8		
10 bar g	23.2	26.7	29.1	32.4	34.3		
11 bar g	27.7	31.3	34.1	36.5	40.2		
12 bar g	30.8	34.7	38.2	40.6	44.9		

Maximum pressure drop <0.3 bar.

Maximum nitrogen flow rate = minimum flow rate + 30%

^{1.} Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO₂ (0.03 %), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

 $^{\rm 2.}$ m³/hr refers to conditions at 1013mbar(a) and 20 $^{\circ}\text{C}$

Ambient Conditions

Ambient temperature	+2°C to +50°C
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

Maximum operating pressure	13.0 bar g
Min. / Max. operating temperature	+2°C / +50°C
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

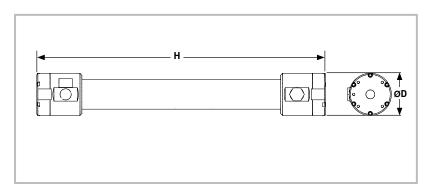
Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.059*	
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.059*	

* Revision number may vary, make sure to use the most recent Revision

Material	
Housing	Aluminum

Services on Request


3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x Ø D	736 x 114 mm
Weight	5.3 kg
Connection inlet / outlet	G¾ female
Vent	G1 female
Dimensional drawing	Refer to K3.1.346

Note

HiFluxx ST6010

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Purity % ¹	Minimum nitrogen flow rate in m ³ /hr ²					
Purity %	99	98	97	96	95	
4 bar g	2.21	3.61	4.92	6.28	7.76	
5 bar g	2.76	4.52	6.15	7.85	9.70	
6 bar g	3.39	5.92	8.02	10.2	12.8	
7 bar g	3.96	6.90	9.35	12.0	14.9	
8 bar g	4.52	7.89	10.7	13.7	17.1	
9 bar g	5.39	9.01	12.3	15.7	19.2	
10 bar g	5.66	9.86	13.4	17.1	21.3	
11 bar g	6.24	10.8	14.8	18.9	23.6	
12 bar g	6.83	11.7	16.2	20.8	25.8	

Density of	Feed-air consumption at minimum nitrogen flow rate in m ³ /hr ²						
Purity %	99	98	97	96	95		
4 bar g	14.4	16.3	17.7	19.5	21.0		
5 bar g	17.9	20.3	22.1	24.3	26.2		
6 bar g	22.4	25.4	28.1	30.7	33.3		
7 bar g	26 .1	29.7	32.7	35.9	38.8		
8 bar g	29.9	33.9	37.4	41.0	44.4		
9 bar g	35.1	39.6	43.0	47.0	51.9		
10 bar g	36.8	43.4	46.8	51.2	57.6		
11 bar g	43.7	49.7	54.7	58.7	63.6		
12 bar g	47.8	54.0	60.0	64.5	69.6		

Maximum pressure drop <0.3 bar.

Maximum nitrogen flow rate = minimum flow rate + 30%

^{1.} Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO₂ (0.03 %), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

^{2.} m³/hr refers to conditions at 1013mbar(a) and 20 °C

Ambient Conditions

Ambient temperature	+2°C to +50°C
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

Maximum operating pressure	13.0 bar g ³
Min. / Max. operating temperature	+2°C / +50°C ³
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

^{3.} combination of high operating pressure and high operating temperature can reduce the life time expectancy of the membrane module

Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.059*	
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.059*	

* Revision number may vary, make sure to use the most recent Revision

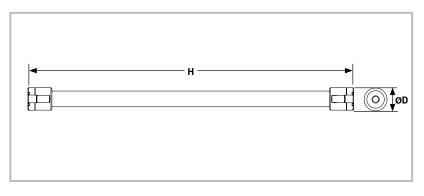
Mechanical Design Housing

Design pressure	15 bar g
Design temperature	50°C

membrane operating limits are lower

Material

Services on Request


3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x Ø D	736 x 139 mm
Weight	8.1 kg
Connection inlet / outlet	G1 female
Vent	G1 female
Dimensional drawing	Refer to K3.1.347

Note

HiFluxx ST1506

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

D	Minimum nitrogen flow rate in m ³ /hr ²							Durity 0/	Feed-air consumption at minimum nitrogen flow rate in m³/hr ²					
Purity % ¹	99.5	99	98	97	96	95		Purity %	99.5	99	98	97	96	95
4 bar g	1.06	1.45	2.29	3.17	4.05	5.02		4 bar g	8.98	9.15	9.84	11.1	12.1	13.0
5 bar g	1.56	2.15	3.38	4.68	5.98	7.41		5 bar g	13.3	13.5	14.5	16.4	17.9	19.3
6 bar g	2.04	2.81	4.42	6.12	7.82	9.69		6 bar g	17.3	17.7	19.0	21.4	23.5	25.2
7 bar g	2.40	3.30	5.20	7.20	9.20	11.4		7 bar g	20.4	20.8	22.4	25.2	27.6	29.6
8 bar g	2.88	3.96	6.24	8.64	11.0	13.7		8 bar g	24.5	24.9	26.8	30.2	33.1	35.6
9 bar g	3.36	4.62	7.28	10.1	12.9	16.0		9 bar g	28.6	29.1	31.3	35.3	38.6	41.5
10 bar g	3.84	5.28	8.32	11.5	14.7	18.2		10 bar g	32.6	33.3	35.8	40.3	44.2	47.4
11 bar g	4.32	5.94	9.36	13.0	16.6	20.5		11 bar g	36.7	37.4	40.2	45.4	49.7	53.4
12 bar g	4.80	6.60	10.4	14.4	18.4	22.8		12 bar g	40.8	41.6	44.7	50.4	55.2	59.3
13 bar g	5.04	6.93	10.9	15.1	19.3	23.9		13 bar g	42.8	43.7	47.0	52.9	58.0	62.2

Maximum pressure drop <0.3 bar.

Maximum nitrogen flow rate = minimum flow rate + 30%

1- Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO, (0.03 %), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

 2 m³/hr refers to conditions at 1013mbar(a) and 20 $^\circ\text{C}$

Ambient Conditions

Ambient temperature	+2°C to +50°C
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

13.0 bar g
+2°C / +50°C
<0.01 mg/m ³
filtered at 0.01 µm cut off
<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.059*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.059*

* Revision number may vary, make sure to use the most recent Revision

Mechanical Design Housing

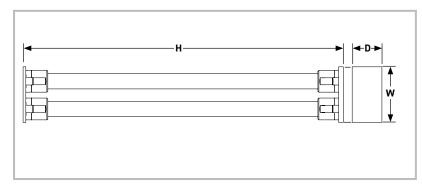
Design pressure	15 bar g
Design temperature	65°C

membrane operating limits are lower

Material

Housing	Aluminum

Services on Request


Material certificates EN10204-3.1 on housing material (for Stainless Steel only) **3D model CAD STEP file**

Weight, Dimensions and Connections

Dimensions H x Ø D	1655 x 100 mm
Weight	5.7 kg
Connection inlet / outlet	G¾ female
Vent	G1 female
Dimensional drawing	Refer to K3.1.334

Note

HiFluxx DT1506-8

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Density 0/1	Minimum nitrogen flow rate in m ³ /hr ²							Durity 0/	Feed-air consumption at minimum nitrogen flow rate in m ³ /hr ²					
Purity % ¹	99.5	99	98	97	96	95		Purity %	99.5	99	98	97	96	95
4 bar g	2.31	3.63	6.25	8.58	10.9	13.2		4 bar g	19.6	22.9	26.9	30.0	32.6	34.3
5 bar g	3.41	5.36	9.23	12.7	16.1	19.5		5 bar g	29.0	33.8	39.7	44.4	48.2	50.7
6 bar g	4.46	7.01	12.1	16.6	21.0	25.5		6 bar g	37.9	44.2	51.9	58.0	63.0	66.3
7 bar g	5.25	8.25	14.2	19.5	24.7	30.0		7 bar g	44.6	52.0	61.1	68.3	74.1	78.0
8 bar g	6.30	9.90	17.0	23.4	29.6	36.0		8 bar g	53.6	62.4	73.3	81.9	88.9	93.6
9 bar g	7.35	11.6	19.9	27.3	34.6	42.0		9 bar g	62.5	72.8	85.5	95.6	104	109
10 bar g	8.40	13.2	22.7	31.2	39.5	48.0		10 bar g	71.4	83.2	97.7	109	119	125
11 bar g	9.45	14.9	25.6	35.1	44.5	54.0		11 bar g	80.3	93.6	110	123	133	140
12 bar g	10.5	16.5	28.4	39.0	49.4	60.0		12 bar g	89.3	104	122	137	148	156
13 bar g	11.0	17.3	29.8	41.0	51.9	63.0		13 bar g	93.7	109	128	143	156	164

Maximum pressure drop <0.8 bar.

Maximum nitrogen flow rate = minimum flow rate + 10%

^{1.} Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO₂ (0.03 %), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

 $^{\rm 2.}$ m³/hr refers to conditions at 1013mbar(a) and 20 $^{\circ}\text{C}$

Ambient Conditions

Ambient temperature	+2°C to +50°C
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

Maximum operating pressure	13.0 bar g
Min. / Max. operating temperature	+2°C / +50°C
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.059*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.059*

* Revision number may vary, make sure to use the most recent Revision

Mechanical Design Housing

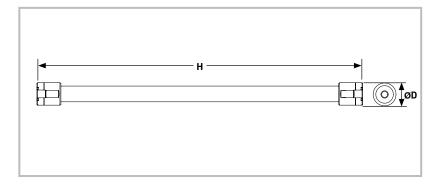
Design pressure	13 bar g
Design temperature	50°C

membrane operating limits are lower

Material

Housing	Aluminum

Services on Request


Material certificates EN10204-3.1 on housing material (for Stainless Steel only) 3D model CAD STEP file

Weight, Dimensions and Connections

Model	4 - 8 bar g	9 - 13 bar g
Dimensions H x W x D (mm)	1705 x 296 x 208	1732 x 296 x 208
Weight	15 kg	15 kg
Connection inlet / outlet	G¾ female	G¾ female
Vent	G1 female	2 x G1 female
Dimensional drawing	Refer to K3.1.356	Refer to K3.1.357

Note

HiFluxx ST1508

Purity % ¹	Minimum nitrogen flow rate in m ³ /hr ²					
	99.5	99	98	97	96	95
4 bar g	2.07	2.95	4.84	6.60	8.8	11.0
5 bar g	3.06	4.36	7.15	9.75	13.0	16.3
6 bar g	4.00	5.70	9.35	12.8	17.0	21.3
7 bar g	4.70	6.70	11.0	15.0	20.0	25.0
8 bar g	5.17	7.37	12.1	16.5	22.0	27.5
9 bar g	6.11	8.71	14.3	19.5	26.0	32.5
10 bar g	6.58	9.38	15.4	21.0	28.0	35.0
11 bar g	7.52	10.7	17.6	24.0	32.0	40.0
12 bar g	7.99	11.4	18.7	25.5	34.0	42.5
13 bar g	8.46	12.1	19.8	27.0	36.0	45.0

Purity %	Feed-air consumption at minimum nitrogen flow rate in m ³ /hr ²					
	99.5	99	98	97	96	95
4 bar g	17.6	18.6	20.8	23.1	26.4	28.6
5 bar g	26.0	27.4	30.7	34.1	39.0	42.3
6 bar g	34.0	35.9	40.2	44.6	51.0	55.3
7 bar g	40.0	42.2	47.3	52.5	60.0	65.0
8 bar g	43.9	46.4	52.0	57.8	66.0	71.5
9 bar g	51.9	54.9	61.5	68.3	78.0	84.5
10 bar g	55.9	59.1	66.2	73.5	84.0	91.0
11 bar g	63.9	67.5	75.7	84.0	96.0	104
12 bar g	67.9	71.8	80.4	89.3	102.0	111
13 bar g	71.9	76.0	85.1	94.5	108.0	117

Maximum pressure drop <0.3 bar.

Maximum nitrogen flow rate = minimum flow rate + 30%

^{1.} Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO₂ (0.03 %), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

 $^{\rm 2.}$ m³/hr refers to conditions at 1013mbar(a) and 20 $^\circ C$

Ambient Conditions

Ambient temperature	+2°C to +50°C
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

Maximum operating pressure	13.0 bar g
Min. / Max. operating temperature	+2°C / +50°C
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.059*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.059*

* Revision number may vary, make sure to use the most recent Revision

Mechanical Design Housing

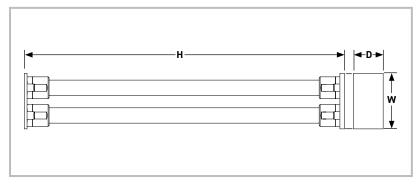
Design pressure	15 bar g
Design temperature	65°C

membrane operating limits are lower

Material

Housing	Aluminum

Services on Request


Material certificates EN10204-3.1 on housing material (for Stainless Steel only)
3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x Ø D	1655 x 114 mm
Weight	6.8 kg
Connection inlet / outlet	G¾ female
Vent	G1 female
Dimensional drawing	Refer to K3.1.330

Note

HiFluxx DT1508

Performance data

Performance data on 20°C feed-air temperature and 1013 mbar ambient pressure

Nitrogen Purity %			ium nitro in m³/hr ³		/ rate		Nitrogen		Nitrogen Purity % Feed-air consumption at minimum nitrogen rate in m ³ /hr ² (CFM) ²						
Turity /0	99.5	99	98	97	96	95		i dilty /0	99.5	99	98	97	96	95	
4 bar g	3.08	4.84	8.36	11.4	14.5	17.6		4 bar g	26.2	30.5	35.9	40.0	43.6	45.8	
(58 psi g)	(1.81)	(2.85)	(4.92)	(6.71)	(8.53)	(10.4)		(58 psi g)	(15.4)	(18)	(21.1)	(23.5)	(25.7)	(27)	
5 bar g	4.55	7.15	12.4	16.9	21.5	26.0		5 bar g	38.7	45.0	53.1	59.2	64.4	67.6	
(72.5 psi g)	(2.68)	(4.21)	(7.3)	(9.95)	(12.7)	(15.3)		(72.5 psi g)	(22.8)	(26.5)	(31.3)	(34.8)	(37.9)	(39.8)	
6 bar g	5.95	9.35	16.2	22.1	28.1	34.0		6 bar g	50.6	58.9	69.4	77.4	84.2	88.4	
(87 psi g)	(3.5)	(5.5)	(9.53)	(13)	(16.5)	(20)		(87 psi g)	(29.8)	(34.7)	(40.8)	(45.6)	(49.6)	(52)	
7 bar g	7.00	11.0	19.0	26.0	33.0	40.0		7 bar g	59.5	69.3	81.7	91.0	99.0	104	
(101.5 psi g)	(4.12)	(6.47)	(11.2)	(15.3)	(19.4)	(23.5)		(101.5 psi g)	(35)	(40.8)	(48.1)	(53.6)	(58.3)	(61.2)	
8 bar g	8.40	13.2	22.8	31.2	39.6	48.0		8 bar g	71.4	83.2	98.0	109	119	125	
(116 psi g)	(4.94)	(7.77)	(13.4)	(18.4)	(23.3)	(28.3)		(116 psi g)	(42)	(49)	(57.7)	(64.2)	(70)	(73.6)	
9 bar g	9.80	15.4	26.6	36.4	46.2	56.0		9 bar g	83.3	97.0	114	127	139	146	
(130.5 psi g)	(5.77)	(9.06)	(15.7)	(21.4)	(27.2)	(33)		(130.5 psi g)	(49)	(57.1)	(67.1)	(74.7)	(81.8)	(85.9)	
10 bar g	11.2	17.6	30.4	41.6	52.8	64.0		10 bar g	95.2	111	131	146	158	166	
(145 psi g)	(6.59)	(10.4)	(17.9)	(24.5)	(31.1)	(37.7)		(145 psi g)	(56)	(65.3)	(77.1)	(85.9)	(93)	(97.7)	
11 bar g	12.6	19.8	34.2	46.8	59.4	72.0		11 bar g	107	125	147	164	178	187	
(159.5 psi g)	(7.42)	(11.7)	(20.1)	(27.5)	(35)	(42.4)		(159.5 psi g)	(63)	(73.6)	(86.5)	(96.5)	(105)	(110)	
12 bar g	14.0	22.0	38.0	52.0	66.0	80.0		12 bar g	119	139	163	182	198	208	
(174 psi g)	(8.24)	(12.9)	(22.4)	(30.6)	(38.8)	(47.1)		(174 psi g)	(70)	(81.8)	(95.9)	(107)	(117)	(122)	
13 bar g	14.7	23.1	39.9	54.6	69.3	84.0		13 bar g	125	146	172	191	208	218	
(188.5 psi g)	(8.65)	(13.6)	(23.5)	(32.1)	(40.8)	(49.4)		(188.5 psi g)	(73.6)	(85.9)	(101)	(112)	(122)	(128)	

Maximum pressure drop <0.8 bar (12 psi) Maximum nitrogen flow rate = minimum flow rate + 10%.

Values between brackets are indicative imperial values

^{1.} Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100%. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO2 (0.03 %), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

². m³/hr (CFM) refers to conditions at 1013 mbar(a) (14.7 psi a) and 20°C (68°F).

Ambient Conditions

Ambient temperature	+2°C to +50°C (+36°F to +122°F)
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

Maximum operating pressure	13.0 bar g (189 psi g)
Min. / Max. operating temperature	+2°C to +50°C (+36°F to +122°F)
Maximum oil vapour content	<0.01 mg/m ³ (<0.01 ppm (w))
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C (68°F)	Use bulletin S3.1.059*
Feed-air consumption at feed-air temperatures other than 20°C (68°F)	Use bulletin S3.1.059*

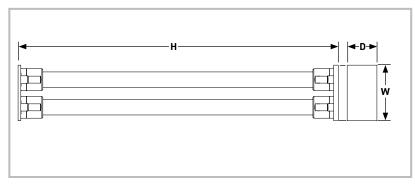
* Revision number may vary, make sure to use the most recent Revision

Mechanical Design Housing

•	-
Design pressure	13 bar g (189 psi g)
Design temperature	50°C (122°F)
Material	

Housing	Aluminum

Services on Request


Material certificates EN10204-3.1 on housing material (for Stainless Steel only) 3D model CAD STEP file

Weight, Dimensions and Connections

Model	4 - 8 bar g (58 - 116 psi g)	9 - 13 bar g (117 - 190 psi g)
Dimensions H x W x D	1705 x 296 x 201 mm (67.1" x 11.7" x 7.9")	1705 x 296 x 145 mm (67.1" x 11.7" x 5.7")
Weight	16 kg (35.3 lb)	16 kg (35.3 lb)
Connection inlet / outlet	G¾ female to ISO 228	G¾ female to ISO 228
Vent	G1 female to ISO 228	2 x G1 female to ISO 228
Dimensional drawing	Refer to K3.1.335	Refer to K3.1.336

Note

HiFluxx DT1508SS

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Purity % ¹	N	/linimum r	nitrogen f	low rate i	n m³/hr ²		Purity %							
Purity %	99.5	99	98	97	96	95	Purity %	99.5	99	98	97	96	95	
4 bar g	3.08	4.84	8.36	11.4	14.5	17.6	4 bar g	26.2	30.5	35.9	40.0	43.6	45.8	
5 bar g	4.55	7.15	12.4	16.9	21.5	26.0	5 bar g	38.7	45.0	53.1	59.2	64.4	67.6	
6 bar g	5.95	9.35	16.2	22.1	28.1	34.0	6 bar g	50.6	58.9	69.4	77.4	84.2	88.4	
7 bar g	7.00	11.0	19.0	26.0	33.0	40.0	7 bar g	59.5	69.3	81.7	91.0	99.0	104	
8 bar g	8.40	13.2	22.8	31.2	39.6	48.0	8 bar g	71.4	83.2	98.0	109	119	125	
9 bar g	9.80	15.4	26.6	36.4	46.2	56.0	9 bar g	83.3	97.0	114	127	139	146	
10 bar g	11.2	17.6	30.4	41.6	52.8	64.0	10 bar g	95.2	111	131	146	158	166	
11 bar g	12.6	19.8	34.2	46.8	59.4	72.0	11 bar g	107	125	147	164	178	187	
12 bar g	14.0	22.0	38.0	52.0	66.0	80.0	12 bar g	119	139	163	182	198	208	
13 bar g	14.7	23.1	39.9	54.6	69.3	84.0	13 bar g	125	146	172	191	208	218	

Maximum pressure drop <0.8 bar.

Maximum nitrogen flow rate = minimum flow rate + 10%

^{1.} Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO₂ (0.03 %), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

 $^{\rm 2.}$ m³/hr refers to conditions at 1013mbar(a) and 20 $^{\circ}\text{C}$

Ambient Conditions

Ambient temperature	+2°C to +50°C
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

Maximum operating pressure	13.0 bar g
Min. / Max. operating temperature	+2°C / +50°C
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.059*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.059*

* Revision number may vary, make sure to use the most recent Revision

Mechanical Design Housing

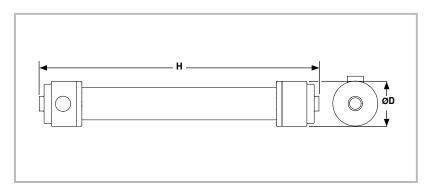
Design pressure	15 bar g
Design temperature	65°C

membrane operating limits are lower

Material

Housing	Stainless Steel
---------	-----------------

Services on Request


Material certificates EN10204-3.1 on housing material (for Stainless Steel only) 3D model CAD STEP file

Weight, Dimensions and Connections

Model	
Dimensions H x W x D (mm)	1734 x 296 x 145
Weight	39 kg
Connection inlet / outlet	G¾ female
Vent	2 x G1 female
Dimensional drawing	Refer to K3.1.362

Note

HiFluxx ST15020-1

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Purity % ¹	Ту	pical nitro	gen flow ra	te in m³/hr²		Purity %	Feed-air consumption at typical nitrogen flow rate in m ³ /hr ²					
Purity 70	99	98	97	96	95	Purity %	99	98	97	96	95	
4 bar g	24.0	39.0	53.0	71.0	89.0	4 bar g	161	175	191	220	239	
5 bar g	35.0	58.0	78.0	105	131	5 bar g	238	259	283	324	353	
6 bar g	46.0	75.0	103	137	171	6 bar g	289	324	359	411	445	
7 bar g	54.0	89.0	121	161	201	7 bar g	340	381	423	483	523	
8 bar g	59.0	97.0	133	177	221	8 bar g	374	419	465	531	576	

Maximum pressure drop <0.3 bar.

^{1.} Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO₂ (0.03 %), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

^{2.} m³/hr refers to conditions at 1013mbar(a) and 20 °C

Above tables reflect nominal flow rates. The nitrogen output of each individual module can vary +/- 15%. For selection purposes, calculation should be done based on nominal conditions without taking the variation into account. When ordering modules, it is necessary that the total modules needed for each individual project are clearly mentioned per order-line on the order-intake-form. Parker will assure that the total output flow rate (sum of the individual selected membranes flow rates) will be minimum the total nominal flow rate. The compressor selection can be done on the total calculated nominal flow rate without taking any variation into account.

Ambient Conditions

Ambient tempera ture	+2°C to +50°C
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

Maximum operating pressure	9.0 bar g
Min. / Max. operating temperature	+2°C / +50°C
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.059*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.059*

* Revision number may vary, make sure to use the most recent Revision

Example:

Your project requires 1515 Nm³/hr nitrogen at 8 bar g inlet pressure, 95% purity and 20°C inlet temperature. You will need 7 modules. Parker will ensure a minimum total product flow of 1515 Nm³/hr. However, individual module performance can still vary +/-15%. The compressor should be selected on a total air consumption of 7 x 576 = 4032 Nm³/hr.

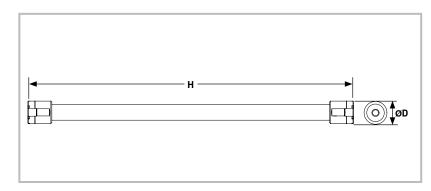
Mechanical Design Housing

Design pressure	14 bar g
Design temperature	65°C

membrane operating limits are lower

Material

Housing	Aluminum
Services on Request	


3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x Ø D	1740 x 280 mm
Weight	46 kg
Connection inlet / outlet	G2½ female
Vent	100 mm OD
Dimensional drawing	K3.1.339*

Note

HiFluxx ST1508SS

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Purity % ¹	N	linimum	nitrogen f	flow rate i	in m³/hr²		Density 0/	Feed-air consumption at minimum nitrogen flow rate in m ³ /hr ²							
Purity %	99.5	99	98	97	96	95	Purity %	99.5	99	98	97	96	95		
4 bar g	2.07	2.95	4.84	6.60	8.8	11.0	4 bar g	17.6	18.6	20.8	23.1	26.4	28.6		
5 bar g	3.06	4.36	7.15	9.75	13.0	16.3	5 bar g	26.0	27.4	30.7	34.1	39.0	42.3		
6 bar g	4.00	5.70	9.35	12.8	17.0	21.3	6 bar g	34.0	35.9	40.2	44.6	51.0	55.3		
7 bar g	4.70	6.70	11.0	15.0	20.0	25.0	7 bar g	40.0	42.2	47.3	52.5	60.0	65.0		
8 bar g	5.17	7.37	12.1	16.5	22.0	27.5	8 bar g	43.9	46.4	52.0	57.8	66.0	71.5		
9 bar g	6.11	8.71	14.3	19.5	26.0	32.5	9 bar g	51.9	54.9	61.5	68.3	78.0	84.5		
10 bar g	6.58	9.38	15.4	21.0	28.0	35.0	10 bar g	55.9	59.1	66.2	73.5	84.0	91.0		
11 bar g	7.52	10.7	17.6	24.0	32.0	40.0	11 bar g	63.9	67.5	75.7	84.0	96.0	104		
12 bar g	7.99	11.4	18.7	25.5	34.0	42.5	12 bar g	67.9	71.8	80.4	89.3	102.0	111		
13 bar g	8.46	12.1	19.8	27.0	36.0	45.0	13 bar g	71.9	76.0	85.1	94.5	108.0	117		

Maximum pressure drop <0.3 bar.

Maximum nitrogen flow rate = minimum flow rate + 30%

^{1.} Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO2 (0.03 %), and some trace inert gases. Therefore it should be born in mind that the value that is normally called the nitrogen content actually is the inert gas content.

^{2.} m³/hr refers to conditions at 1013mbar(a) and 20°C

Ambient Conditions

Ambient temperature	+2°C to +50°C
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

Maximum operating pressure	13.0 bar g
Min. / Max. operating temperature	+2°C / +50°C
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.059*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.059*

* Revision number may vary, make sure to use the most recent Revision

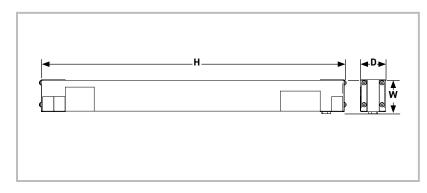
Mechanical Design Housing

Design pressure	15 bar g
Design temperature	65°C
membrane operating limits are lower	

membrane operating limits are lower

Material

Housing	Stainless Steel
---------	-----------------


Services on Request

Material certificates EN10204-3.1 on housing material (for Stainless Steel only) 3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x Ø D	1654 x 114 mm
Weight	18 kg
Connection inlet / outlet	G¾ female
Vent	G1 female
Dimensional drawing	Refer to K3.1.358

Note

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Durity 0/	Purity %			ched oxygen flow rate in I/min ¹				
	28	30	32	34	36	38	40	
4 bar g	16.9	17.3	17.7	18.1	18.4	18.8	-	
5 bar g	21.5	22	22.5	23.0	23.5	24.0	24.5	
6 bar g	26.3	26.9	27.5	28.1	28.7	29.3	29.9	
7 bar g	31.1	31.9	32.6	33.3	34.0	34.7	35.4	
8 bar g	36.1	37.0	37.8	38.6	39.4	40.2	41.1	
9 bar g	41.3	42.2	43.1	44.1	45.0	45.9	46.9	
10 bar g	46.5	47.5	48.6	49.7	50.7	51.8	52.8	
11 bar g	51.9	53	54.2	55.4	56.6	57.8	58.9	
12 bar g	57.3	58.6	59.9	61.3	62.6	63.9	65.2	

Enriched oxygen flow exits at atmospheric pressure

Maximum pressure drop over nitrogen enriched flow <0.3 bar.

Maximum enriched oxygen flow rate = minimum flow rate + 30%

¹ I/min refers to conditions at 1013 mbar(a) and 20°C

Ambient Conditions

Ambient temperature	+2°C to +45°C*
Ambient pressure	atmospheric
Air quality	clean air without contaminants

*Maximum inlet temperature, 35°C when operating at 13 bar g.

Feed-air Conditions

13 bar g**
+2°C / +45°C*
<0.01 mg/m ³
filtered at 0.01 µm cut off
<100% (non condensing)

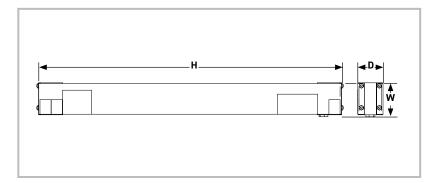
*Maximum inlet temperature, 35°C when operating at 13 bar g. **Maximum inlet pressure, 10 bar g when operating at 45°C.

Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.085*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.085*

*Version number may vary, make sure to use the most recent version.

Durity 0/	Feed-air consumption at minimum enriched oxygen flow ra			n flow rate	in l/min 1		
Purity %	28	30	32	34	36	38	40
4 bar g	24.5	28.4	33.4	41.3	54.2	77.1	-
5 bar g	31.2	35.5	41.1	49.5	61.7	80.6	139
6 bar g	38.1	43.3	50.2	58.1	72.8	92.2	138
7 bar g	45.1	51.2	59.5	68.8	83.1	104	149
8 bar g	52.4	59.4	69.0	79.9	96.5	120	166
9 bar g	59.8	67.8	78.8	91.2	111	137	187
10 bar g	67.4	76.6	88.8	103	125	158	219
11 bar g	75.7	85.7	99.6	116	143	182	261
12 bar g	83.7	95.0	110	129	160	208	310


Material

Housing	Steel
Tube	Aluminium
Coating (housing)	ESPC to Ral 7035 (Light Grey)
Coating (tube)	None

Weight, Dimensions and Connections

Dimensions H x W x D	386 x 80 x 63 mm
Weight	2.3 kg
Connection feed-air	G ³ /8" female to ISO 228
Connection nitrogen enriched air	G ³ /8" female to ISO 228
Connection oxygen enriched air at atmospheric pressure	G ³ /8" female to ISO 228
Dimensional drawing	Refer to K3.1.348

Note

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Oxygen		Minimum enriched oxygen flow rate in I/min ¹⁾							
purity %	28	30	32	34	36	38	40		
4 bar g	35.7	36.6	37.4	38.2	39.0	39.8	-		
5 bar g	45.5	46.6	47.6	48.6	49.7	50.7	51.7		
6 bar g	55.6	56.8	58.1	59.3	60.6	61.9	63.1		
7 bar g	65.9	67.4	68.9	70.4	71.8	73.3	74.8		
8 bar g	76.4	78.1	79.9	81.6	83.4	85.1	86.8		
9 bar g	87.2	89.2	91.2	93.2	95.2	97.2	99.1		
10 bar g	98.3	101	103	105	107	109	112		
11 bar g	110	112	115	117	120	122	125		
12 bar g	121	124	127	130	132	135	138		

Enriched oxygen flow exits at atmospheric pressure

Maximum pressure drop over nitrogen enriched flow <0.3 bar.

Maximum enriched oxygen flow rate = minimum flow rate + 30% 1 l/min refers to conditions at 1013mbar(a) and 20°C

Ambient Conditions

Ambient temperature	+2°C to +50°C
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

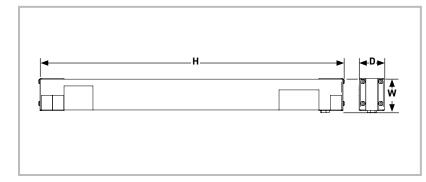
Maximum operating pressure	13.0 bar g
Min. / Max. operating temperature	+2°C / +50°C
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.085*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.085*

* version number may vary, make sure to use the most recent version

Oxygen purity %	Feed-air consumption at minimum enriched oxygen flow rate in l/min $^{\prime}$						
	28	30	32	34	36	38	40
4 bar g	49.3	57.2	67.3	83.2	109	155	-
5 bar g	62.8	71.6	82.8	99.7	124	162	279
6 bar g	76.7	87.1	101	117	147	186	278
7 bar g	90.9	103	120	139	167	209	299
8 bar g	105	120	139	161	194	243	334
9 bar g	120	136	159	184	223	277	377
10 bar g	136	154	179	208	252	318	441
11 bar g	152	172	201	233	287	366	525
12 bar g	169	191	222	259	321	419	624


Material

Housing	Steel
Tube	Aluminium
Coating (housing)	ESPC to Ral 7035 (Light Grey)
Coating (tube)	None

Weight, Dimensions and Connections

Dimensions H x W x D	757 x 80 x 63 mm
Weight	3.2 kg
Connection feed-air	G ³ /8" female to ISO 228
Connection nitrogen enriched air	G ³ /8" female to ISO 228
Connection oxygen enriched air at atmospheric pressure	G ³ / ₈ " female to ISO 228
Dimensional drawing	Refer to K3.1.344

Note

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Oxygen	Minimum enriched oxygen flow rate in I/min ¹⁾							
purity %	28	30	32	34	36	38	40	
4 bar g	69.2	70.8	72.3	74.0	75.5	77.2	-	
5 bar g	88.2	90.2	92.2	94.2	96.2	98.2	100	
6 bar g	108	110	113	115	118	120	122	
7 bar g	128	131	133	136	139	142	145	
8 bar g	148	151	155	158	162	165	168	
9 bar g	168	173	177	180	185	188	192	
10 bar g	190	195	198	203	208	212	217	
11 bar g	212	217	222	227	232	237	242	
12 bar g	235	240	245	252	257	262	267	

Enriched oxygen flow exits at atmospheric pressure

Maximum pressure drop over nitrogen enriched flow <0.3 bar.

Maximum enriched oxygen flow rate = minimum flow rate + 30%

 $^{\rm 1.}$ l/min refers to conditions at 1013mbar(a) and 20°C

Ambient Conditions

Ambient temperature	+2°C to +50°C
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

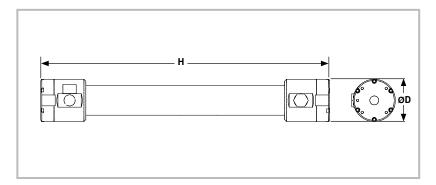
Maximum operating pressure	13.0 bar g
Min. / Max. operating temperature	+2°C / +50°C
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.085*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.085*

*version number may vary, make sure to use the most recent version

Oxygen purity %	Feed-air consumption at minimum enriched oxygen flow rate in I/min ¹⁾						
	28	30	32	34	36	38	40
4 bar g	95.6	111	130	161	212	301	-
5 bar g	122	139	160	193	241	314	541
6 bar g	149	169	196	227	284	360	538
7 bar g	176	200	232	269	324	405	580
8 bar g	204	232	269	312	376	470	648
9 bar g	233	264	307	356	431	536	730
10 bar g	263	299	347	403	488	615	855
11 bar g	295	334	389	452	556	710	1018
12 bar g	327	371	430	502	623	811	1208


Material

Housing	Steel
Tube	PVC
Coating (housing)	ESPC to RAL 7035 (Light Grey)
Coating Tube	None

Weight, Dimensions and Connections

Dimensions H x W x D	751 x 110 x 84 mm
Weight	6.4 kg
Connection feed-air	G ¹ /2" female to ISO 228
Connection nitrogen enriched air	G ¹ /2" female to ISO 228
Connection oxygen enriched air at atmospheric pressure	G ¹ /2" female to ISO 228
Dimensional drawing	Refer to K3.1.345

Note

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Oxygen	Minimum enriched oxygen flow rate in I/					/min ¹⁾	
purity %	28	30	32	34	36	38	40
4 bar g	128	131	134	137	140	143	-
5 bar g	163	167	170	174	178	181	185
6 bar g	199	203	207	212	216	221	225
7 bar g	235	240	246	251	256	261	267
8 bar g	273	279	285	291	297	303	309
9 bar g	311	318	325	332	339	346	353
10 bar g	351	358	366	374	382	390	397
11 bar g	391	400	408	417	426	435	443
12 bar g	432	442	452	461	471	481	490

Enriched oxygen flow exits at atmospheric pressure

Maximum pressure drop over nitrogen enriched flow <0.3 bar.

Maximum enriched oxygen flow rate = minimum flow rate + 30%

^{1.} I/min refers to conditions at 1013mbar(a) and 20°C

Ambient Conditions

Ambient temperature	+2°C to +50°C
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

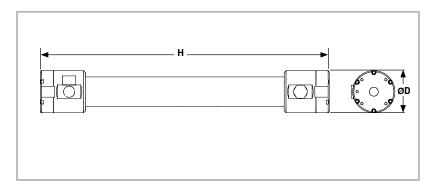
Maximum operating pressure	13.0 bar g
Min. / Max. operating temperature	+2°C / +50°C
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.085*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.085*

* version number may vary, make sure to use the most recent version

Oxygen	Feed-air	consumpti	on at minin	num enrich	ed oxygen f	flow rate in	l/min 1)
purity %	28	30	32	34	36	38	40
4 bar g	177	206	242	299	392	557	-
5 bar g	225	256	296	357	444	580	998
6 bar g	274	311	361	417	523	662	991
7 bar g	324	368	427	494	597	745	1066
8 bar g	376	426	495	573	692	864	1190
9 bar g	429	487	565	654	793	985	1340
10 bar g	484	550	637	741	897	1130	1569
11 bar g	543	615	715	830	1022	1304	1869
12 bar g	601	682	791	923	1145	1490	2219


Material

Housing	Aluminum
---------	----------

Weight, Dimensions and Connections

Dimensions H x ø D	736 x 114 mm
Weight	5.3 kg
Connection feed-air	G ³ /4" female to ISO 228
Connection nitrogen enriched air	G ³ / ₄ " female to ISO 228
Connection oxygen enriched air at atmospheric pressure	G1" female to ISO 228
Dimensional drawing	Refer to K3.1.346

Note

Performance data

Performance data is based on 20°C feed-air temperature and 1013 mbar ambient pressure

Oxygen	Minimum enriched oxygen flow rate in I/m					/min ¹⁾	
purity %	28	30	32	34	36	38	40
4 bar g	250	256	262	268	274	280	-
5 bar g	318	325	333	341	348	356	364
6 bar g	387	396	406	415	425	434	443
7 bar g	458	470	481	492	503	514	525
8 bar g	532	545	558	571	584	596	609
9 bar g	607	622	637	652	666	681	696
10 bar g	685	701	718	735	751	768	784
11 bar g	764	783	801	820	838	857	875
12 bar g	846	866	887	907	928	948	969

Enriched oxygen flow exits at atmospheric pressure		Enriched oxyge	n flow exits	at atmosp	heric press	ure
--	--	----------------	--------------	-----------	-------------	-----

Maximum pressure drop over nitrogen enriched flow <0.3 bar

Maximum enriched oxygen flow rate = minimum flow rate + 30% 10 l/min refers to conditions at 1013mbar(a) and 20°C

Ambient Conditions

Ambient temperature	+2°C to +50°C
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Feed-air Conditions

Maximum operating pressure	13.0 bar g ²⁾
Min. / Max. operating temperature	+2°C / +50°C ²⁾
Maximum oil vapour content	<0.01 mg/m ³
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

 $^{\rm 2}$ combination of high operating pressure and high operating temperature can reduce the life time expectancy of the membrane module.

Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C	Use bulletin S3.1.085*
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.085*

* version number may vary, make sure to use the most recent version

Oxygen	Feed-air consumption at minimum enriched oxygen flow rate in I/min ¹⁾									
purity %	28	30	32	34	36	38	40			
4 bar g	345	401	472	585	768	1093	-			
5 bar g	438	500	579	698	871	1139	1964			
6 bar g	534	608	706	818	1027	1302	1950			
7 bar g	633	718	836	969	1172	1465	2101			
8 bar g	734	833	970	1124	1360	1700	2346			
9 bar g	838	952	1108	1284	1559	1941	2644			
10 bar g	945	1076	1249	1455	1765	2227	3097			
11 bar g	1062	1204	1402	1632	2012	2571	3691			
12 bar g	1176	1336	1552	1814	2254	2939	4385			

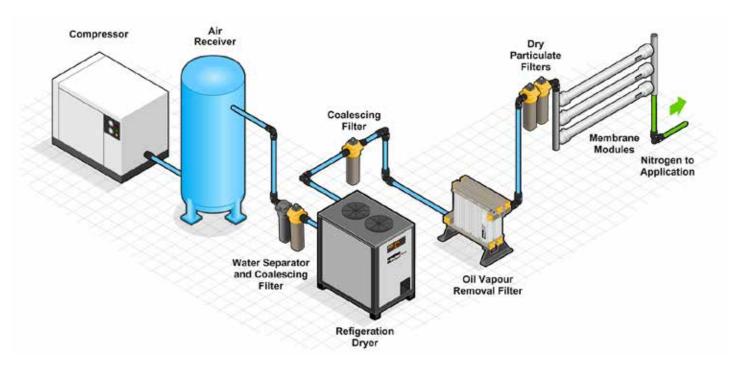
Material

Weight, Dimensions and Connections

Dimensions H x ø D	736 x 139 mm
Weight	8.1 kg
Connection feed-air	G 1" female to ISO 228
Connection nitrogen enriched air	G 1" female to ISO 228
Connection oxygen enriched air at atmospheric pressure	G 1" female to ISO 228
Dimensional drawing	Refer to K3.1.347

Required Filtration for Parker Membrane Modules

To ensure a long life for Parker membranes modules, feed-air needs to comply with the following specifications:


- filtered at 0.01 µm cut off IS08573-1:2010 Solid Particulate class 1
- Residual oil content: < 0.01 mg/m³ IS08573-1:2010 Oil class 1
 - < 100% (non condensing)

clean air treated by an active carbon bed type absorber to remove solvents,

hydrocarbons, ozone etc.

Generally to ISO8573.1:2010 class 1.4.1. If ambient temperature is below 8°C then a desiccant dryer is recommended.

To reach this feed-air quality the following system set-up is advised:

Compressor

Particles:

Air quality:

Relative humidity:

Due to varying nitrogen or oxygen enriched-air demands, the feed-air requirements will also vary. Parker advises to use a variable speed screw compressor to get the highest efficiency and best working conditions for the compressor. At pressures of 7 to 8 barg, standard industrial screw compressors have their highest efficiency which is also the most optimal pressure with the lowest energy use for the Parker membranes modules.

Air receiver

In case a variable speed screw compressor is used, it is not necessary to use an air receiver. When a non-variable speed compressor is used with an air receiver, the receiver must be of such a size that the compressor will not switch on and off

at a high frequency as this will cause increased oil carryover.

Water separator

A water separator is recommended when it is unsure whether liquid water can be carried over. The downstream coalescing filters are not designed to remove bulk water. In case that pipework between air receiver - dryer is short and pipework is indoors a water separator can be void.

Refrigerant dryer

A refrigerant dryer is sufficient to lower the dew point to an acceptable level. When a nitrogen or oxygen enriched-air system is located in an environment where the temperature cannot drop below 8°C a refrigerant dryer that creates a dew point of 3°C is sufficient. Should the feed-air temperature drop below 8°C, another drying method is required, for example an adsorption dryer. The refrigerant dryer should be sized correctly and should be equipped with sufficient condensate removal.

Filtration

To filter the feed-air to the specified quality the following filters are needed:

Coarse coalescing filter

A coarse coalescing filter for 1 Micron particles.

This filter is normally located before the refrigerant dryer or the fine coalescing filter.

Fine coalescing filter

A fine coalescing filter for 0.01 Micron particles. This filter is normally located after the refrigerant dryer or the coarse coalescing filter.

Carbon absorber, bed-type

An activated carbon absorber, bed-type filled with carbon granulates. Filters with an active carbon element are not sufficient for the protection of nitrogen membrane modules.

Dust filter

Because a carbon bed can cause dust, particulate filtration is needed. Dependent of the dust carry-over of the bed, one fine filter, or coarse and fine filter are needed, whichever is appropriate to meet the requirements.

General

All filters should be sized correctly for the application.

Maintenance and filter element change must be carried out following the applicable instructions and in line with the application.

Depending on the system requirements Parker has a wide range of compressed air pre-filtration products to select from.

Membrane Temperature Correction Factors

Temperature has influence on the performance of the Parker membranes. As the temperature changes so does the membrane performance. As a consequence the capacity and feed-air factor differ from the ones at nominal temperature (20°C).

Hereafter are the tables with correction factors for temperatures differing from 20°C for the HiFluxx/Smartfluxx and Enoxy membrane modules.

HiFluxx

Table 1

Temperature	Nitrogen flow rate correction factor for HiFluxx at various product concentrations ¹⁾							
	99.5%	99 %	98%	97 %	96 %	95 %		
5°C (41°F)	0.9	0.9	0.9	0.9	0.9	0.9		
10°C (50°F)	0.9	0.9	0.9	0.9	0.9	0.9		
30°C (86°F)	1.0	1.0	1.0	1.0	1.0	1.0		
40°C (104°F)	0.6	0.8	1.0	1.0	1.1	1.1		
50°C (122°F)	0.6	0.8	1.0	1.1	1.1	1.2		

Example

Sizing conditions								
Inlet pressure	7 bar _g							
Nitrogen purity	97%							
Feed-air temperature	50°C							
N2 correction factor	1.1 (table 1)							
Feed-air correction factor	1.3 (table 2)							
Module	HiFluxx ST1508							
N2 flow rate HiFluxx ST1508	15 m ³ /hr (at 20°C)							
Feed-air consumption HiFluxx ST1508	52.5 m ³ /hr (at 20°C)							

Table 2

Temperature	Feed-Air consumption correction factor for HiFluxx at various product concentrations ¹⁾							
	99.5 %	99 %	98%	97 %	96 %	95 %		
5°C (41°F)	0.8	0.8	0.8	0.8	0.8	0.8		
10°C (50°F)	0.9	0.9	0.9	0.9	0.9	0.9		
30°C (86°F)	1.1	1.1	1.1	1.1	1.1	1.1		
40°C (104°F)	1.2	1.2	1.2	1.2	1.2	1.2		
50°C (122°F)	1.3	1.3	1.3	1.3	1.3	1.3		

Corrected Nitrogen Flow Calculation at 50°C and 97% Corrected nitrogen flow: 15 m³/hr x 1.1 = 16.5 m³/hr

Corrected Feed-Air Calculation at 50°C and 97% Corrected feed-air flow: 52.5 m³/hr x 1.3 = 68.3 m³/hr

¹⁾These numbers are indicative and may vary by +/- 0.1

SmartFluxx

Table 1

Temperature	Nitrogen flow rate correction factor for SmartFluxx (SA) at various product concentrations ¹⁾							
	99.5%	99 %	98%	97 %	96 %	95 %		
5°C (41°F)	-	-	0.90	0.90	0.90	0.90		
10°C (50°F)	-	-	0.95	0.95	0.95	0.95		
20°C (68°F)	1.00	1.00	1.00	1.00	1.00	1.00		
30°C (86°F)	1.00	1.03	1.05	1.05	1.05	1.05		
40°C (104°F)	1.00	1.05	1.10	1.10	1.10	1.10		
50°C (122°F)	1.00	1.05	1.10	1.10	1.15	1.15		
60°C (140°F)	1.10	1.15	1.20	1.20	1.25	1.20		

 $^{\mbox{\tiny 1)}}$ These numbers are indicative and may vary by +/- 0.1

Table 2

Temperature	Feed-Air consumption correction factor for SmartFluxx (SA) at various product concentrations ¹⁾							
	99.5%	99 %	96 %	95%				
5°C (41°F)	-	-	0.90	0.90	0.90	0.90		
10°C (50°F)	-	-	0.95	0.95	0.95	0.95		
20°C (68°F)	1.00	1.00	1.00	1.00	1.00	1.00		
30°C (86°F)	1.10	1.10	1.10	1.10	1.10	1.10		
40°C (104°F)	1.25	1.20	1.15	1.15	1.10	1.10		
50°C (122°F)	1.35	1.30	1.25	1.20	1.15	1.15		
60°C (140°F)	1.60	1.60	1.55	1.55	1.50	1.50		

Table 1

Temperature	Oxygen flow rate correction factor for EnOxy at various product concentrations ¹⁾								
	28 %	30%	32 %	34 %	36 %	38%	40%		
5°C (41°F)	0.76	0.76	0.76	0.76	0.76	0.76	0.76		
10°C (50°F)	0.84	0.84	0.84	0.84	0.84	0.84	0.84		
15°C (59°F)	0.91	0.91	0.91	0.91	0.91	0.91	0.91		
25°C (77°F)	1.09	1.09	1.09	1.09	1.09	1.09	1.09		
30°C (86°F)	1.19	1.19	1.19	1.19	1.19	1.19	1.19		
35°C (95°F)	1.30	1.30	1.30	1.30	1.30	1.30	1.30		
40°C (104°F)	1.42	1.42	1.42	1.42	1.42	1.42	*		
45°C (113°F)	1.54	1.54	1.54	1.54	1.54	1.54	*		
50°C (122°F)	1.68	1.68	1.68	1.68	1.68	*	*		

Temperature	Feed-Air consumption correction factor for EnOxy at various product concentrations ¹⁾								
	28 %	30%	32%	34 %	36 %	38%	40 %		
5°C (41°F)	0.76	0.76	0.76	0.76	0.76	0.76	0.76		
10°C (50°F)	0.84	0.84	0.84	0.84	0.84	0.84	0.84		
15°C (59°F)	0.91	0.91	0.91	0.91	0.91	0.91	0.91		
25°C (77°F)	1.09	1.09	1.09	1.09	1.09	1.09	1.09		
30°C (86°F)	1.19	1.19	1.19	1.19	1.19	1.19	1.19		
35°C (95°F)	1.30	1.30	1.30	1.30	1.30	1.30	1.30		
40°C (104°F)	1.42	1.42	1.42	1.42	1.42	1.42	*		
45°C (113°F)	1.54	1.54	1.54	1.54	1.54	1.54	*		
50°C (122°F)	1.68	1.68	1.68	1.68	1.68	*	*		

Table 2

¹⁾ These numbers are indicative
 ^{*} No enriched oxygen can be generated at this temperature / oxygen% combination

Example

Sizing conditions	
Inlet pressure	7 barg _g
Nitrogen purity	34%
Feed-air temperature	30°C
N ₂ correction factor	1.19 (table 1)
Feed-air correction factor	1.25 (table 2)
Module	EnOxy 608
N ₂ flow rate EnOxy608	251 l/hr (at 20°C)
Feed-air consumption EnOxy608	494 l/hr (at 20°C)

Corrected Nitrogen Flow Calculation at 30°C and 34% Corrected oxygen flow: 251 l/hr x 1.19 = 298.7 l/hr

Corrected Feed-Air Calculation at 30°C and 34% Corrected feed-air flow: 494 l/hr x 1.25 = 617.5 l /hr